Cách Vẽ Tam Giác Đều Trong Corel / Top 15 Xem Nhiều Nhất & Mới Nhất 9/2023 # Top Trend | Englishhouse.edu.vn

Cách Vẽ Tam Giác Đều

Đội ngũ biên tập viên và nhà nghiên cứu giàu kinh nghiệm của chúng tôi đã đóng góp cho bài viết này và đã kiểm tra nó về tính chính xác và đầy đủ.

Số lượng nguồn được sử dụng trong bài viết này: 6. Bạn sẽ tìm thấy một danh sách của chúng ở cuối trang.

Một nhóm các nhà quản lý nội dung theo dõi cẩn thận công việc của các biên tập viên để đảm bảo rằng mỗi bài viết đáp ứng các tiêu chuẩn chất lượng cao của chúng tôi.

Trong một tam giác đều, tất cả các cạnh và góc đều bằng nhau. Vẽ thủ công một tam giác đều hoàn hảo là khá khó. Nhưng bạn có thể sử dụng thước đo góc để đặt chính xác các góc. Cũng sử dụng một thước kẻ để vẽ các đường thẳng hoàn toàn. Bài viết này sẽ cho bạn biết làm thế nào để vẽ một tam giác đều.

Xem video

Việc xây dựng các hình tam giác khác nhau là một yếu tố thiết yếu của khóa học hình học. Đối với nhiều người, nhiệm vụ này gây ra sự sợ hãi. Nhưng trên thực tế, mọi thứ khá đơn giản. Phần còn lại của bài viết mô tả cách vẽ một hình tam giác thuộc bất kỳ loại nào bằng la bàn và thước kẻ.

đa năng, isosceles, bằng nhau, hình chữ nhật, obtuse, góc cạnh cấp tính, được ghi trong một vòng tròn, được mô tả xung quanh một vòng tròn.

Xây dựng tam giác đều

Sử dụng một thước kẻ, vẽ một trong các cạnh của một chiều dài nhất định. Đo chiều dài của nó bằng một la bàn. Đặt đầu của la bàn ở một đầu của dòng và vẽ một vòng tròn. Di chuyển đầu đến đầu kia của dòng và vẽ một vòng tròn. Chúng tôi có 2 điểm giao nhau của vòng tròn. Kết nối bất kỳ trong số chúng với các cạnh của phân khúc, chúng ta có được một hình tam giác đều.

Xây dựng tam giác cân

Loại hình tam giác này có thể được xây dựng trên cơ sở và các mặt.

Sử dụng thước kẻ, đặt một đoạn có chiều dài bằng với đế. Hãy để chúng tôi chỉ định nó với các chữ cái AC. Với một la bàn, chúng tôi đo chiều dài cần thiết của mặt bên. Chúng ta vẽ từ điểm A, và sau đó từ điểm C, các vòng tròn có bán kính bằng chiều dài của cạnh bên. Chúng tôi nhận được hai điểm giao nhau. Khi kết nối một trong số chúng với các điểm A và C, chúng ta có được tam giác cần thiết.

Xây dựng tam giác vuông

Một hình tam giác với một góc của một dòng được gọi là hình chữ nhật. Nếu chúng ta được cho một chân và cạnh huyền, vẽ một tam giác vuông không khó. Nó có thể được xây dựng theo chân và cạnh huyền.

Sử dụng thước kẻ, chúng ta vẽ một cạnh huyền có độ dài cho trước. Chúng tôi gọi đoạn này là AB. Chúng tôi sắp xếp lại đầu la bàn cho điểm B và thực hiện một hành động tương tự. Vòng cung của chúng tôi giao nhau ở hai nơi. Kết nối những điểm này. Điểm giao nhau của đường thẳng này và đoạn AB là điểm giữa của nó, điểm O. Sử dụng một la bàn, vẽ một đường tròn có tâm nằm tại điểm O và bán kính bằng với đoạn AO. Từ điểm A, chúng ta vẽ một la bàn có hình vòng cung có bán kính bằng một chân cho trước. Điểm giao nhau của cung và đường tròn là đỉnh thứ ba mong muốn của tam giác. Chúng tôi kết nối nó với các điểm A và B. Nhiệm vụ đã hoàn thành.

Xây dựng một tam giác tù ở góc và hai cạnh kề

Sử dụng thước kẻ, chúng tôi hoãn một đoạn có chiều dài bằng một trong các cạnh của tam giác. Hãy để chúng tôi chỉ định nó bằng chữ A và D. Nếu một góc đã được vẽ trong tác vụ và bạn cần vẽ giống nhau, thì trên hình ảnh của anh ấy đặt hai phân đoạn, cả hai đầu nằm ở đầu góc và độ dài bằng với các cạnh được chỉ định. Kết nối các điểm kết quả. Chúng ta có tam giác mong muốn. Để chuyển nó vào bản vẽ của bạn, bạn cần đo chiều dài của bên thứ ba.

Tam giác đã đăng ký

Để vẽ một hình tam giác trong một hình tròn, bạn cần nhớ định lý, trong đó nói rằng tâm của hình tròn được bao quanh nằm ở giao điểm của đường vuông góc giữa:

Chúng tôi xây dựng hai đường vuông góc giữa cho bất kỳ hai bên. Điểm giao nhau (hãy gọi nó là O) là tâm của đường tròn được bao quanh mong muốn. Theo tiên đề, hai đường thẳng chỉ có thể có một điểm giao nhau, do đó không cần phải vẽ cả ba đường vuông góc. Chúng tôi đo khoảng cách từ điểm O đến bất kỳ đỉnh nào của tam giác bằng một la bàn và vẽ một đường tròn. Nhiệm vụ đã hoàn thành.

Đối với một tam giác tù, tâm của đường tròn ngoại tiếp nằm bên ngoài tam giác, và đối với một tam giác vuông, nó nằm ở giữa cạnh huyền.

Vẽ tam giác mô tả

Tam giác được mô tả là một hình tam giác ở trung tâm mà một hình tròn được vẽ, chạm vào tất cả các cạnh của nó. Tâm của vòng tròn được ghi nằm ở giao điểm của đường phân giác. Để xây dựng chúng, bạn cần:

Với bán kính tùy ý ta vẽ một cung có tâm là một trong các đỉnh của tam giác. Chúng ta gọi các điểm giao nhau của cung với các cạnh P và M. Với cùng bán kính, vẽ thêm hai cung, với tâm tại các điểm P và M. Nối điểm giao nhau của chúng với đỉnh ban đầu. Các bisector được xây dựng. Để xác định bán kính hình tròn, cần xây dựng đường vuông góc từ điểm O sang hai bên. Với bán kính tùy ý, vẽ một cung tròn có tâm tại điểm O sao cho nó cắt cạnh bên đã chọn (đặt nó là cạnh AC) ở hai vị trí. Với bán kính AO ta vẽ hai đường tròn, có tâm tại các điểm A và C. Nối các điểm giao nhau của các vòng tròn. Điểm giao nhau của đường này và cạnh của loa (chúng ta biểu thị nó bằng E) là đường vuông góc mong muốn. Chúng tôi đo đoạn EO bằng một cặp la bàn và vẽ một vòng tròn được khắc. Do đó, bạn có thể vẽ tam giác mô tả.

Cách vẽ tam giác đều bằng la bàn Tìm hiểu thêm

Kiến thức là sức mạnh. Thông tin nhận thức

Cách vẽ tam giác đều

Làm thế nào để vẽ một tam giác đều chỉ bằng thước kẻ và bút chì? Phương pháp này cho phép bạn nhanh chóng vẽ một mô hình tam giác đều hoặc cân.

Cách vẽ tam giác cân

Chúng tôi bắt đầu vẽ từ phía dưới. Chúng tôi chọn độ dài cơ sở sao cho thuận tiện khi chia nó thành một nửa (chúng tôi lấy số lượng ô chẵn). Đỉnh của tam giác được đánh dấu chính xác phía trên giữa của cơ sở:

Nếu bạn cần một tam giác cân, có cạnh lớn hơn đáy, hãy đặt đỉnh cao hơn:

Nếu một hình tam giác là bắt buộc, cơ sở của nó lớn hơn cạnh bên, sau đó đánh dấu trên cùng bên dưới:

Cách vẽ tam giác đều

Từ phần cuối của cơ sở, chúng tôi hoãn một đoạn có độ dài bằng nhau để phần cuối thứ hai của đoạn này nằm chính xác ở giữa phần đế. Kết nối đỉnh của tam giác với đầu kia của cơ sở:

Cách vẽ tam giác đều bằng la bàn Làm thế nào để vẽ một hình tam giác trong một vòng tròn?

Trong thực tế, sử dụng một la bàn, sẽ có ý nghĩa để xây dựng một tam giác đều. Bất kỳ tam giác có thể được xây dựng chỉ bằng một thước kẻ. Trong trường hợp này, điều thú vị hơn là xây dựng một tam giác đều. Vì vậy, hành động của chúng tôi

Xây dựng một vòng tròn. Vẽ đường kính trên đó, đánh dấu các điểm giao nhau của đường kính với đường tròn. Trong hình, đây là điểm A. Từ điểm chúng ta xây dựng một vòng tròn có cùng bán kính. Một lần nữa chúng ta vẽ một đường kính, nhưng để đường thẳng này kết nối các tâm của vòng tròn của chúng ta. Ta tìm các điểm giao nhau của đường thẳng (đường kính) với đường tròn thứ hai, điểm B. Và các điểm giao nhau của đường tròn thứ hai với điểm thứ nhất, điểm F D. Nối cả ba điểm và có một tam giác đều.

Vẽ một vòng tròn với một la bàn và chọn bất kỳ ba điểm trên đó. Sau đó, sử dụng một thước đo, kết nối chúng theo chuỗi. Đó là tất cả. Nói chung, đây là một nhiệm vụ rất dễ dàng, nếu tôi hiểu đúng

Làm thế nào để vẽ một tam giác có cạnh bằng nhau?

Làm thế nào để vẽ một tam giác có cạnh bằng nhau? Bạn có thể sử dụng một trong ba phương pháp cho việc này.

Một hình như vậy có ba cạnh có chiều dài bằng nhau, được nối với nhau bằng ba góc có chiều rộng bằng nhau. Có thể khó vẽ một hình tam giác bằng tay. Do đó, bạn có thể sử dụng một vật tròn để làm nổi bật các góc.

Tùy chọn hình dạng

Hãy chắc chắn sử dụng thước kẻ và một trong các phương pháp sau:

Áp dụng la bàn: cần vẽ đường thẳng. Vẽ một cây bút chì dọc theo cạnh thẳng của tờ giấy. Đoạn đường này tạo thành một trong các mặt. Và điều này có nghĩa là sẽ cần phải vẽ các dòng thứ hai và thứ ba có cùng độ dài, mỗi dòng đạt đến một điểm ở góc 60 ° so với dòng đầu tiên. Hãy chắc chắn rằng có đủ không gian để vẽ cả ba mặt!

Chia phân khúc với một la bàn. Chèn một cây bút chì và chắc chắn rằng nó là sắc nét! Đặt điểm la bàn ở một đầu của đoạn và đặt bút chì ở đầu kia. Mô tả vòng cung. Không thay đổi bộ chiều rộng của bộ công cụ từ điểm la bàn sang điểm bút chì. Vẽ một cung thứ hai để nó giao với cung thứ nhất đã được vẽ. Đánh dấu điểm tại đó hai cung tròn giao nhau. Đây là đỉnh (điểm trên cùng) của tam giác. Nó nên nằm ở trung tâm chính xác của đoạn đường đã được vẽ. Bây giờ bạn có thể thực hiện hai đường thẳng dẫn đến điểm này: một đường thẳng từ mỗi đầu của đoạn đường dưới thấp của YouTube. Kết thúc tam giác. Sau đó, bằng cách sử dụng một thước kẻ, vẽ thêm hai đoạn của một đường thẳng – đây là các cạnh trong tam giác. Kết nối mỗi đầu của đoạn đường ban đầu với điểm mà các cung tròn giao nhau. Để hoàn thành công việc, hãy xóa các cung mà bạn đã vẽ để chỉ còn lại hình tam giác.

Sử dụng một vật thể có đế tròn: mẹo này phù hợp để xây dựng một vòng cung. Phương pháp đề xuất về cơ bản giống như sử dụng một la bàn.

Những lời khuyên này sẽ giúp bạn tìm ra cách vẽ một tam giác đều.

Các khuyến nghị cho việc xây dựng một tam giác cân

Một tam giác cân là một hình có hai cạnh bằng nhau và hai góc bằng nhau. Nếu bạn biết chiều dài, cơ sở và chiều cao của mặt bên, điều này chỉ có thể được thực hiện với thước kẻ và la bàn (hoặc chỉ một la bàn, nếu kích thước được đưa ra).

Cách vẽ tam giác cân:

Cho tất cả các chiều dài bên. Để sử dụng phương pháp này, điều quan trọng là phải biết chiều dài của đáy của tam giác và chiều dài của hai cạnh bằng nhau.

Cho hai cạnh bằng nhau và góc giữa chúng. Để sử dụng phương pháp này, bạn cần biết độ dài của hai cạnh bằng nhau và phép đo góc giữa hai cạnh này.

Cho cơ sở và các góc liền kề – bạn cần biết chiều dài của cơ sở, độ của hai góc liền kề với cơ sở. Hãy nhớ rằng hai góc kề với đáy của một tam giác cân sẽ bằng nhau.

Cơ sở và chiều cao. Bạn cần biết chiều dài đáy của hình tam giác, cũng như chiều cao của hình hình học này.

Vẽ Tam Giác Sao Đều Trong C#

Bài tập C#: Vẽ tam giác sao đều

Viết chương trình C# để nhập một số làm số hàng (hay độ rộng theo chiều ngang) của tam giác sao và sau đó vẽ tam giác sao đều có số hàng đó.

Ví dụ, nếu bạn nhập số hàng là 4 thì vẽ tam giác số có dạng: * * * * * * * * * * Chương trình C# using System; namespace ZaidapCsharp { class TestCsharp { public static void Main() { int i, j, bien_dem, so_hang, k; Console.Write(" "); Console.Write("Ve tam giac sao deu trong C#: "); Console.Write(" "); Console.Write("Nhap so hang: "); so_hang = Convert.ToInt32(Console.ReadLine()); bien_dem = so_hang + 4 - 1; for (i = 1; i <= so_hang; i++) { { Console.Write(" "); } for (j = 1; j <= i; j++) Console.Write("* "); Console.Write(" "); bien_dem--; } Console.ReadKey(); } } }

Nếu bạn không sử dụng lệnh Console.ReadKey(); thì chương trình sẽ chạy và kết thúc luôn (nhanh quá đến nỗi bạn không kịp nhìn kết quả). Lệnh này cho phép chúng ta nhìn kết quả một cách rõ ràng hơn.

Kết quả chương trình C#

Biên dịch và chạy chương trình C# trên sẽ cho kết quả:

Mọi người cho thể tham gia khóa học thứ 6 của vietjackteam (đang tuyển sinh) vào đầu tháng 03/2023 do anh Nguyễn Thanh Tuyền, admin chúng tôi trực tiếp giảng dạy tại Hà Nội. Chi tiết nội dung khóa học tham khỏa link : .Các bạn học CNTT, điện tử viễn thông, đa phương tiện, điện-điện tử, toán tin có thể theo học khóa này. Số lượng các công việc Java hoặc .NET luôn gấp ít nhất 3 lần Android hoặc iOS trên thị trường tuyển dụng.

Mọi người có thể xem demo nội dung khóa học tại địa chỉ

Các bạn ở xa học không có điều kiện thời gian có thể tham dự khóa Java online để chủ động cho việc học tập. Trong tháng 4/2023, Zaidap khuyến mại giá SỐC chỉ còn 150k cho khóa học, liên hệ facebook admin chúng tôi để thanh toán chuyển khoản hoặc thẻ điện thoại, khóa học bằng Tiếng Việt với gần 100 video, các bạn có thể chủ động bất cứ lúc nào, và xem mãi mãi. Thông tin khóa học tại

Follow fanpage của team hoặc facebook cá nhân Nguyễn Thanh Tuyền để tiếp tục theo dõi các loạt bài mới nhất về Ngữ pháp tiếng Anh, luyện thi TOEIC, Java,C,C++,Javascript,HTML,Python,Database,Mobile … mới nhất của chúng tôi.

Bài học Bài tập C# phổ biến tại vietjack.com:

Vẽ Logo 3D Hình Tam Giác Bằng Corel, Học Corel Online

Vẽ logo 3D hình tam giác bằng Corel, học Corel online là bài hướng dẫn của tự học corel online ngày hôm nay. Thông thường trong Corel, khi ta muốn làm hình 3D ta thường hay dùng lệnh Extrude nổi khối trong Corel, nhưng trong bài này ta chỉ dùng hình tam giác trong nhóm công cụ Polygon là được, chỉ cần tính toán và vẽ là ta sẽ được hình 3D một cách dể dàng.

Thành quả của chúng ta là đây

bạn thấy hay thì đăng ký ngay email, và đăng ký youtube để nhận những bài mới nhất

Có điều này, hãy để lại email, chúng tôi sẽ gửi bài vào email bạn, cùng nhiều bài khác nữa

Có điều này, hãy để lại email, chúng tôi sẽ gửi bài vào email bạn, cùng nhiều bài khác nữa

Xin cảm ơn! Tất cà bài viết, kiến thức trong Học Đồ Họa Online hoàn toàn miễn phí, tất cả các bài viết các bạn đều có thể sử dụng. Nếu các bạn thấy hay, bổ ích hãy nhấn like, share để giới thiệu cho nhiều người khác biết đến trang Học Đồ Họa Online hơn.

Hình Lăng Trụ Là Gì? Lăng Trụ Tam Giác Đều, Tứ Giác Đều, Lục Giác

Để học tốt môn Toán lớp 12

VnDoc xin giới thiệu tới bạn đọc Hình lăng trụ là gì? Lăng trụ tam giác đều, tứ giác đều, lục giác. Nội dung tài liệu sẽ giúp các bạn học tốt Toán 12 hiệu quả hơn. Mời các bạn tham khảo.

Toán 12: Hình lăng trụ là gì? Lăng trụ tam giác đều, tứ giác đều, lục giác

Định nghĩa và tính chất hình lăng trụ, lăng trụ tam giác đều, lăng trụ tứ giác đều, lục giác

1. Hình lăng trụ

Định nghĩa: Hình lăng trụ là một đa diện gồm có hai đáy là hai đa giác bằng nhau và nằm trên hai mặt phẳng song song, các mặt bên là hình bình hành, các cạnh bên song song hoặc bằng nhau

Tính chất: Hình hộp là hình lăng trụ có đáy là hình bình hành

Thể tích: thể tích hình lăng trụ bằng diện tích của mặt đáy và khoảng cách giữa hai mặt đáy hoặc là chiều cao.

B: diện tích mặt đáy của hình lăng trụ

H: chiều cao của của hình lăng trụ

V: thể tích hình lăng trụ

2. Hình lăng trụ đều

Định nghĩa: Hình lăng trụ đều là hình lăng trụ đứng có đáy là đa giác đều.

Tính chất:

Hai đáy là hai đa giác đều bằng nhau do đó các cạnh đáy bằng nhau.

Cạnh bên vuông góc với mặt đáy.

Các mặt bên là các hình chữ nhật.

Ví dụ: Các lăng trụ đều thường gặp như là lăng trụ tam giác đều, lăng trụ tứ giác đều, lăng trụ ngũ giác đều, hình lăng trụ lục giác đều, …

3. Lăng trụ tam giác đều, lăng trụ tứ giác đều, lăng trụ ngũ giác đều, lăng trụ lục giác đều

Định nghĩa:

Hình lăng trụ tam giác đều là hình lăng trụ có hai đáy là 2 hình tam giác đều.

Hình lăng trụ tứ giác đều là hình lăng trụ đều có đáy là hình vuông.

Hình lăng trụ ngũ giác đều là hình lăng trụ đều có đáy là hình ngũ giác.

Hình lăng trụ lục giác đều là hình lăng trụ đều có đáy là lục giác.

Hình lăng trụ lục giác đều Hình lăng trụ ngũ giác đều Hình lăng trụ tứ giác đều Hình lăng trụ tam giác đều

4. Bài tập trắc nghiệm Lăng trụ tam giác đều, lăng trụ tứ giác đều, lăng trụ ngũ giác đều, lăng trụ lục giác đều

Câu 1: Các mặt bên của một bát diện đều là hình gì?

Câu 2: Hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông tại A, cạnh AB = 1, BC = , cạnh bên A’A = . Thể tích khối lăng trụ đó là:

Câu 3: Cho lăng trụ đứng ABC.A’B’C’. Gọi H là trực tâm của tam giác ABC. Thể tích khối lăng trụ được tính theo công thức nào sau đây?

Câu 4: Xét các mệnh đề sau:

1. Hai khối đa diện đều có thể tích bằng nhau là hai đa diện bằng nhau

2. Hai khối đa diện bằng nhau thì có thể tích bằng nhau

3. Hai khối chóp có thể tích bằng nhau thì có chiều cao bằng nhau

5. Hai khối hộp chữ nhật có thể tích bằng nhau là hai đa diện bằng nhau

Có bao nhiêu mệnh đề sai trong các mệnh đề sau?

Câu 5: Một hình lăng trụ đứng tam giác có tất cả các cạnh bằng a. Thể tích khối lăng trụ đó bằng:

Câu 6: Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A, cạnh BC = . Thể tích khối lăng trụ biết A’B = 3a

Câu 7: Cho khối lăng trụ ABC.A’B’C’. Nếu tam giác A’Bc có diện tích bằng 1 và khoảng cách từ A đến mặt phẳng (A’BC) bằng 2 thì thể tích khối lăng trụ đó là:

Câu 8: Lăng trụ ABC.A’B’C’ có thể tích bằng , mặt bên ABB’A’ có diện tích bằng . Khoảng cách từ C đến mặt phẳng (ABA’) là:

Câu 9: Cho lăng trụ tam giác đều có tất cả các cạnh bằng a và có thể tích bằng 9/4. Tính a?

A. 3

B. 9

Câu 10: Khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A, AB = a. Nếu thể tích của khối lăng trụ bằng

Hình Chóp Đều Là Gì? Hình Chóp Đều Tam Giác, Hình Chóp Đều Tứ Giác

VnDoc xin giới thiệu Hình chóp đều: Hình chóp đều tam giác, hình chóp đều tứ giác. Đây là tài liệu hay giúp bạn thuận tiện hơn trong quá trình học bài và chuẩn bị cho bài học mới trên lớp. Mời các bạn tham khảo.

Toán lớp 8: Hình chóp tứ giác đều, hình chóp tam giác đều

Ngoài ra, chúng tôi đã thành lập group chia sẻ tài liệu học tập THCS miễn phí trên Facebook: Tài liệu học tập lớp 8. Mời các bạn học sinh tham gia nhóm, để có thể nhận được những tài liệu mới nhất.

Hình chóp đều (Hình chóp đa giác đều) là gì?

Hình chóp đều (hình chóp đa giác đều) là hình chóp có đáy là đa giác đều và hình chiếu của đỉnh xuống đáy trùng với tâm của đáy. … Hình chóp đều là hình chóp có đáy là đa giác đều; các cạnh bên bằng nhau.

Tính chất: Chân đường cao của hình chóp đa giác đều là tâm của đáy.

Thể tích hình chóp đều:

Trong đó: S là diện tích đáy, h là chiều cao

Thể tích hình chóp cụt đều:

Trong đó:

B và B’ lần lượt là diện tích của đáy lớn và đáy nhỏ của hình chóp cụt đều.

h là chiều cao (khoảng cách giữa 2 mặt đáy)

Hình chóp tam giác đều

– Hình chóp tam giác đều là hình chóp có đáy là tam giác đều, các mặt bên (cạnh bên) đều bằng nhau hay hình chiếu của đỉnh chóp xuống đáy trùng với tâm của tam giác đều.

Tính chất:

Đáy là tam giác đều

Tất cả các cạnh bên bằng nhau

Tất cả các mặt bên là các tam giác cân bằng nhau

Chân đường cao trùng với tâm mặt đáy (Tâm đáy là trọng tâm tam giác ABC)

Tất cả các góc tạo bởi cạnh bên và mặt đáy đều bằng nhau

Tất cả các góc tạo bởi các mặt bên và mặt đáy đều bằng nhau

Thể tích hình chóp tam giác đều SABC là

Trong đó:

SO là đường cao kẻ từ S xuống tâm O mặt đáy ABC

Ví dụ 1: Cho hình chóp tam giác đều S ABC cạnh đáy bằng a và cạnh bên bằng 2a. Chứng minh rằng chân đường cao kẻ từ S của hình chóp là tâm của tam giác đều ABC. Tính thể tích chóp đều S ABC.

Giải: Dựng SO⊥ ΔABC, Ta có SA = SB = SC suy ra OA = OB = OC

Vậy O là tâm của tam giác đều ABC.

Ta có:

Tam giác ABC đều nên tam giác SAO vuông có:

Hình chóp tứ giác đều

Hình chóp tứ giác đều là hình chóp có đáy là hình vuông và đường cao của chóp đi qua tâm đáy (giao của 2 đường chéo hình vuông)

Tính chất:

Đáy là hình vuông

Tất cả các cạnh bên bằng nhau

Tất cả các mặt bên là các tam giác cân bằng nhau

Chân đường cao trùng với tâm mặt đáy

Tất cả các góc tạo bởi cạnh bên và mặt đáy bằng nhau

Tất cả các góc tạo bởi các mặt bên và mặt đáy đều bằng nhau

Thể tích hình chóp tứ giác SABCD là:

Trong đó: SABCD là diện tích hình vuông ABCD

SO là đường cao kẻ từ O xuống tâm đáy ABCD

Ví dụ 2: Cho khối chóp tứ giác S ABCD có tất cả các cạnh có độ dài bằng a. Chứng minh rằng S ABCD là chóp tứ giác đều. Tính thể tích khối chóp S ABCD.

Giải:

Dựng SO⊥(ABCD)

Ta có SA = SB = SC = SD nên OA = OB = OC = OD