Cách Giải Phương Trình Chứa Căn Bậc 3 Và Căn Bậc 2 / Top 7 # Xem Nhiều Nhất & Mới Nhất 1/2023 # Top View | Englishhouse.edu.vn

Giải Phương Trình Chứa Căn Bậc 2

GIẢI PHƯƠNG TRÌNH CHỨA CĂN BẬC 2

Ngày đăng: 23-10-2018

4,958 lượt xem

A. Định nghĩa :

y =     Đk : A ≥ 0.

B. Dạng phương trình chứa căn bậc hai cơ bản :   ( k ≥ 0)

 Phương pháp giải :

Bước 1 : Điều kiện : A ≥ 0

Bước 2  :  ⇔ A = k2  ( k ≥ 0)

Ví dụ : giải phương trình chứa căn bậc hai

  (1)

Đk : x+1 ≥  0 ⇔ x  ≥  -1

(1) ⇔ 

⇔ 

 ⇔ x + 1 = 4

⇔x = 3

so đk : x = 3 ≥  -1 (nhận)

vậy : S = {3}

c. Dạng phương trình chứa căn bậc hai cơ bản : 

 Phương pháp giải :

Bước 1 : Điều kiện : A ≥ 0

Bước 3  : thử nghiệm.

Ví dụ : giải phương trình chứa căn bậc hai

  (3)

Đk : x  –   7  ≥  0 ⇔ x  ≥  7

(3) ⇔ 

⇔ x  – 7 = 4×2 – 60x + 225

⇔ 4×2 – 61x + 232 = 0

⇔ x = 8 ; x = 29/4

so đk : x = 8 ≥  7  (đúng); và    đúng

x = 29/4  ≥  7 (đúng) ; và    (sai)

x = 29/4 (loại)

vậy : S = {8}

BÀI TẬP TỰ LUYỆN

LIÊN HỆ NGAY VỚI CHÚNG TÔI ĐỂ BIẾT THÊM THÔNG TIN CHI TIẾT

ĐÀO TẠO NTIC  

Địa chỉ: Đường nguyễn lương bằng, P.Hoà Khánh Bắc, Q.Liêu Chiểu, Tp.Đà Nẵng Hotline: 0905540067 - 0778494857 

Email: daotaontic@gmail.com

Đề Tài Giải Phương Trình Có Chứa Dấu Căn Bậc Hai

Trong quá trình dạy học, tôi đã nghiên cứu và tham khảo các tài liệu về chuyên đề đại số và giải tích ở cấp trung học phổ thông. Tôi thấy rằng việc hệ thống lại các dạng cơ bản và phương giải phương trình chứa căn cho học sinh lớp 10 là thực sự cần thiết, nhằm giúp cho học sinh lớp 10 ( học theo chương trình mới ) tiếp cận với việc giải một phương trình có dấu căn bậc hai một cách hiệu quả và có hệ thống. với lí do đó, tôi đã viết đề tài này.

Đây là một đề tài nhỏ nhằm phục vụ cho việc dạy học môn toán cho học sinh lớp 10 ở chương trình nâng cao và bổ trợ kiến thức cho học sinh lớp 10 ban cơ bản trong tiết học tự chọn ( có thể thực hành trong 2 hoặc 3 tiết dạy ), trong chuyên đề này tôi đề cặp đến dạng toán:

GIAÛI PHÖÔNG TRÌNH COÙ CHÖÙA DAÁU CAÊN BAÄC HAI

Đối với phần này, tôi hệ thống lại một số dạng toán cơ bản thường thấy khi giải phương trình có dấu căn bậc hai gồm có các nội dung sau:

1. Tìm tập nghiệm của phương trình thông qua tập xác định của phương trình.

2. Dạng cơ bản của phương trình có chứa dấu căn bậc hai

3. Giải một phương trình chứa dấu căn bậc hai bằng cách đổi biến

4. Dùng phương pháp bất đẳng thức và đánh giá ước lượng hai vế của phương trình

5. Phương pháp biến thiên hằng số

6. Một số dạng toán khác

7. Phương trình chứa dấu căn bậc hai có chứa tham số.

Xin cảm ơn các thầy cô ở trường THPT Phước Thiền đã chân thành góp ý kiến cho tôi hoàn thành đề tài.

Mặt dù có nhiều cố gắng, nhưng do kinh nghiệm không nhiều nên thiếu sót là điều không tránh khỏi, mong các thầy cô chân thành góp ý để tôi có kinh nghiệm tốt hơn trong công tác dạy học môn toán.

Chương Iv. §2. Căn Bậc Hai Của Số Phức Và Phương Trình Bậc Hai

Chương IV. §2. Căn bậc hai của số phức và phương trình bậc hai

Thạc sĩ toán học Nguyễn Văn ThườngKIỂM TRA BÀI CŨCÂU 1CÂU 2Định nghĩa căn bậc hai của số phức, tìm căn bậc hai của các số phức:-5 và 3+4iĐịnh nghĩa: Cho số phức W. Một số phức z thoả mãn z2 =W được gọi là một căn bậc hai của số phức W.+ Căn bậc hai của -5 là vì+Gọi x + yi (x,yR) là căn bậc hai của số phức 3 + 4i ta có:Hệ trên có hai nghiệm làVậy có hai căn bậc hai của 3+4i là : z = 2+i và z = -2-iNêu công thức nghiệm của phương trình Az2 +Bz +C = 0, với A, B, C là các số phức và A≠ 0. Áp dụng làm bài tập 23a, c. Đáp ánĐáp ánÁp dụnglà các số phức và A≠ 0.Với  là một căn bậc hai của Áp dụngTiết 73 CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH BẬC 2 Một số phức z thoả mãn z2 =W được gọi là một căn bậc hai của số phức W.là các số phức và A≠ 0.Với  là một căn bậc hai của Phương trình bậc haiBài 24Biểu diễn tập nghiệm trong mặt phẳng phức+ z + 1= 0  z1 = – 1A-1BC0xyPhương trình có 4 nghiệmĐáp ána.Tiết 73 CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH BẬC 2 Một số phức z thoả mãn z2 =W được gọi là một căn bậc hai của số phức W.là các số phức và A≠ 0.Với  là một căn bậc hai của Phương trình bậc haiBài 24Biểu diễn tập nghiệm trong mặt phẳng phứcA-1BC0xyĐáp ánDA, B, C, D biểu diễn cho các số phứcTiết 73 CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH BẬC 2 Một số phức z thoả mãn z2 =W được gọi là một căn bậc hai của số phức W.phức và A≠ 0.Với  là một căn bậc hai của Phương trình bậc haiBài 25a. Tìm các số thực b, c để pt (a) (ẩn z) nhận z =1+i làm một nghiệm b. Tìm các số thực a, b, c để pt (b) (ẩn z) nhận z =1+i làm nghiệm và cũng nhận z = 2 làm nghiệmlà các sốVì 1+i là một nghiệm của (a) nên:b. Vì 1+i là nghiệm của (b) nên: *Vì 2 là nghiệm của (b) nên Giải hệ (1), (2), (3) ta được Tiết 73 CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH BẬC 2 Một số phức z thoả mãn z2 =W được gọi là một căn bậc hai của số phức W.phức và A≠ 0.Với  là một căn bậc hai của Phương trình bậc haiBài 26a. Dùng công thức cộng trong lượng giác để chứng minh rằng với mọi số thực là các sốtừ đó hãy tìm mọi căn bậc hai của số phứcHãy so sánh cách giải nàyVới cách giải trong bài học *Với mọi số thực  ta có:Suy ra các căn bậc hai của Là:*Gọi x + yi là căn bậc hai của Suy ra các căn bậc hai của Tiết 73 CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH BẬC 2 Một số phức z thoả mãn z2 =W được gọi là một căn bậc hai của số phức W.phức và A≠ 0.Với  là một căn bậc hai của Phương trình bậc haiBài 26b. Tìm các căn bâc hai của số phức bằng cách trên và bằng cách dùng định nghĩalà các sốLà:*Gọi x + yi là căn bậc hai của Vậy các căn bậc hai của Vậy các căn bậc hai của C1C2Tiết 73 CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH BẬC 2 Một số phức z thoả mãn z2 =W được gọi là một căn bậc hai của số phức W.phức và A≠ 0.Với  là một căn bậc hai của Phương trình bậc hailà các sốNếu số phức W có dạngThì các căn bậc hai của W làvề nhà làm hết các phần còn lại.Đọc trước bài DẠNG LUỢNG GIÁC CỦA SỐ PHỨC

Chuyên Đề Giải Một Số Dạng Phương Trình Chứa Căn Thức Bậc Hai, Bậc Ba Bằng Cách Nâng Lên Lũy Thừa

Tờn : Trương Quang An Giỏo viờn Trường THCS Nghĩa Thắng Địa chỉ : Xó Nghĩa Thắng ,Huyện Tư Nghĩa ,Tỉnh Quảng Ngói Điện thoại : 01208127776 Giải một số dạng phương trình chứa căn thức bậc hai, bậc ba bằng cách nâng lên lũy thừa Phương trình vô tỷ (phương trình chứa ẩn trong dấu căn) là một dạng toán khó đối với học sinh nhất là học sinh THCS. Hiện nay, đối với bậc THCS phương trình vô tỉ chỉ được đề cập ở lớp Đại số 9 và cũng chỉ dừng lại ở phương trình chứa căn thức bậc hai. Phương trình chứa căn thức bậc cao hơn chỉ có trong sách nâng cao. Tuy nhiên trong các đề thi học sinh giỏi, thi tuyển vào lớp 10 thường xuất hiện dạng toán này. Khi gặp các phương trình có chứa căn thức, học sinh rất lúng túng không tìm ra cách giải và hay mắc sai lầm khi giải. Với phương trình chứa căn thức bậc hai, học sinh thường chỉ quen một phương pháp là nâng luỹ thừa hai vế để làm mất dấu căn, nhưng trong quá trình giải sẽ thường mắc phải một số sai lầm trong phép biến đổi tương đương phương trình như không tìm tập xác định, không tìm điều kiện trước khi nâng lũy thừa hai vế, dẫn đến kết quả thừa hoặc thiếu nghiệm. 1. Cơ sở xuất phát: Phương trình chứa căn thức bậc hai và căn thức bậc 3 là phương trình có chứa ẩn số dưới dấu căn bậc hai, căn bậc ba. Ví dụ: . Đối với phương trình chứa căn thức ta thường sử dụng một số phép biến đổi cơ bản sau: 1. 2. 3. 4. Các bước giải phương trình chứa căn thức (dạng chung) - Điều kiện xác định của phương trình. - Dùng các phép biến đổi tương đương đưa về dạng phương trình đã học. - Giải phương trình vừa tìm được. - Đối chiếu kết quả tìm được với điều kiện xác định và kết luận nghiệm. Chú ý: Với những phương trình có ĐKXĐ là (trong quá trình biến đổi không đặt điều kiện) khi tìm được nghiệm phải thử lại. Phương pháp nâng lên luỹ thừa là phương pháp nâng hai vế của phương trình lên lũy thừa bậc n để làm mất căn bậc n. Đây là phương pháp thường dùng khi 2 vế của phương trình có luỹ thừa cùng bậc. 2. Diễn biến quá trình tác động của biện pháp: 2.1 Phương trình chứa căn thức bậc hai: Nếu n chẵn thì ta chỉ thực hiện việc nâng lên lũy thừa được khi cả vế của phương trình không âm. Vì vậy đối với phương trình chứa căn bậc chẵn trước khi nâng lên lũy thừa phải phải tìm điều kiện cho ẩn để cả hai vế phương trình không âm. Sau đó nâng lên lũy thừa bậc n và giải phương trình mới nhận được. a. Dạng 1: (I) Đây là dạng phương trình thường gặp trong chương trình giảng dạy, sách giáo khoa toán 9 phần đại số vẫn thường gặp dạng và . Đối với dạng phương trình này thì điều kiện xác định là điều kiện để các căn thức ở vế trái có nghĩa. Lưu ý: Nhiều trường hợp biến đổi dúng phép "" thì sau khi tìm được nghiệm phải kiểm tra ( thử lại) để loại bỏ nghiệm ngoại lai. Ví dụ 1: Giải phương trình: (1) ( Bài 25 SGK toán 9 tập 1) Giải: Điều kiện x 1 khi đó: (1) 9(x - 1) = 441 x - 1 = 49 x = 50 ( nhận) Vậy phương trình (1) có tập nghiệm S = {50}. Ví dụ 2: Giải phương trình : (2) Giải: Điều kiện - 4 < x < 1 (*) Khi đó 2 vế của phương trình (1) không âm, bình phương hai vế ta có: (1) 1 - x + 4 + x + 2 (3) Bình phương hai vế của phương trình (3) ta có: (3) (1 - x)(4 + x) = 4 - x2 - 3x + 4 = 4 x(x + 3) = 0 x = 0 hoặc x = - 3 Đối chiếu với điều kiện (*) ta có nghiệm của phương trình (2) là: x = 0; x = -3. b. Dạng 2: (II) Đây là dạng phương trình rất thường gặp trong chương trình, đồng thời đây cũng là phương trình "trung gian" trong biến đổi phương trình tương đương. Dạng phương trình này ta cần đặt điều kiện để vế phải không âm. Tuy nhiên trong quá trình giảng dạy tôi nhận thấy thông thường học sinh hay "bỏ quên" bước này. Ví dụ: Giải phương trình: (4) Thường gặp phương trình này học sinh sẽ giải như sau: 2x2 - 1 = 9x2 - 48x + 64 7x2 - 48x + 65 = 0 Giải ra được x1 = 5; x2 = Vậy phương trình (4) có hai nghiệm x1 = 5; x2 = Sai lầm của học sinh là chưa tìm điều kiện xác định ( vế phải phải là biểu thức không âm) đã vội tiến hành bình phương hai vế vì vậy giải phương trình xuất hiện các nghiệm ngoại lai x2 = . Trong quá trình giảng dạy giáo viên cần khắc sâu cho học sinh tìm điều kiện xác định trước khi bình phương hai vế, và kiểm tra lại các nghiệm tìm được có phải là phương trình đã cho ban đầu không, đồng thời cần rèn cho học sinh kỹ năng giải bất phương trình để xác định chính xác điều kiện xác định của phương trình (II). Cách giải đúng: Điều kiện xác định: 3x - 8 Khi đó bình phương hai vế phương trình (4) ta được: 2x2 - 1 = 9x2 - 48x + 64 7x2 - 48x + 65 = 0 Giải ra được x1 = 5 ( nhận); x2 = ( loại) Vậy phương trình có nghiệm x = 5 c. Dạng 3: (III) ở phương trình hai vế đều có căn bậc hai, học sinh có thể mắc sai lầm để nguyên hai vế như vậy và bình phương hai vế để làm mất căn . Vì vậy giáo viên cần phân tích kỹ sai lầm mà học sinh có thể mắc phải tức cần khắc sâu cho học sinh tính chất của luỹ thừa bậc 2: a = b a2 = b2 nhưng điều ngược lại chỉ đúng khi a, b cùng dấu. Vì vậy khi bình phương hai vế được phương trình mới tương đương với phương trình ban đầu khi hai vế cùng dấu. ở phương trình (II) khi ta tìm điều kiện xác định vế phải không âm, nhưng vế trái chưa chắc đã không âm, vì vậy ta nên chuyển vế đưa về phương trình có hai vế cùng không âm. Sau đó mới tiến hành nâng lên lũy thừa và thực hiện các bước giải. Ví dụ 1: Giải phương trình: (5) Giải: Điều kiện: (6) ở đây ta thấy với điều kiện vế phải không âm nhưng vế trái chưa hẳn không âm khi giải học sinh thường mắc phải sai lầm là không biến đổi hai vế của phương trình mà để vậy nâng lên lũy thừa vì vậy khi hướng dẫn giải GV cần hướng dẫn để học sinh nhận ra phải biến đổi tiếp để hai vế của phương trình cùng dấu sau đó mới nâng lên lũy thừa. (5) Đến đây học sinh có thể bình phương hai vế: (**) Ta lại gặp phương trình có một vế chứa căn, học sinh có thể mắc sai lầm là bình phương tiếp 2 vế để vế phải mất căn mà không để ý hai vế đã cùng dấu hay chưa. 11x - 2 = 0 hoặc x - 2 = 0 hoặc x = 2 . Và trả lời phương trình (**) có 2 nghiệm : . Sai lầm của học sinh là gì? + Khi giải chưa chú ý đến điều kiện để các căn thức có nghĩa nên sau khi giải không đối chiếu với điều kiện ở (6) : Điều kiện : vì vậy không phải là nghiệm của (5) + Khi bình phương hai vế của phương trình (**) cần có điều kiện vậy không là nghiệm của (5) Hướng khắc phục: Sau khi phân tích sai lầm mà học sinh gặp, từ đó tôi hướng học sinh đến cách giải đúng không phạm sai lầm đã phân tích . Cách 1: Sau khi tìm được và thử lại (5) không nghiệm đúng. Vậy (5) vô nghiệm. ( cách thử lại này thường làm khi việc tìm TXĐ của phương trình đã cho là tương đối phức tạp ) Cách 2: Đặt điều kiện tồn tại của các căn thức của (5) , sau khi giải đến (**) ta tìm điều kiện để bình phương hai vế vậy x thoả mãn : nên phương trình (5) vô nghiệm. Cách 3: Có thể dựa vào điều kiện của ẩn để xét nghiệm của phương trình . Điều kiện của (5) : do đó Vế trái < 0, vế phải 0 nên phương trình (5) vô nghiệm . Sau đó tôi ra một số bài tập tương tự cho học sinh trình bày lời giải. Ví dụ 2: Giải phương trình: (7) Giải: Điều kiện xác định (***) Khi đó (7) Hai vế không âm nên ta bình phương hai vế được: . Điều kiện để bình phương hai vế là , kết hợp với điều kiện (***) ta thấy phương trình vô nghiệm. 2.2 Phương trình chứa căn thức bậc ba: Đối với trường hợp n lẻ ta chỉ cần tìm điều kiện của ẩn để căn thức có nghĩa, sau đó áp dụng quy trình giải tương tự trường họp trên.( nên kiểm tra lại nghiệm tìm được có thõa mãn phương trình ban đầu không?) Dạng phương trình chứa căn thức bậc lẻ ( thường ở THCS là bậc ba) rất ít gặp trong sách giáo khoa và sách bài tập. Tuy nhiên trong sách nâng cao và thi học sinh giỏi, thi tuyển sinh vào lớp 10 vẫn có dạng phương trình này. Phương trình có chứa căn thức bậc lẻ không cần điều kiện biểu thức trong căn lớn hơn 0 vì vậy việc tìm điều kiện xác định thuận lợi hơn so với tìm điều kiện của căn thức bậc chẳn. d. Dạng 4: (IV). + ở căn bậc lẻ: có nghĩa với nên không cần đặt điều kiện . + ở luỹ thừa bậc lẻ: a = b a2n+1 = b2n+1; (nN) nên không cần xét đến dấu của hai vế. Ví dụ 1: Giải phương trình: (8) Giải: Điều kiện xác định . Lập phương hai vế phương trình (8) ta được: (7) 2 - 3x = -8 x = Vậy phương trình có tập nghiệm là S = + Tuy nhiên trong nhiều trường hợp khi ta nâng lên lũy thừa hai vế sẽ xuất hiện một phương trình mới nhìn rất phức tạp, học sinh thường lúng túng, vì vậy giáo viên cần hướng dẫn học sinh khéo léo sử dụng các hằng đẳng thức đã học để biến đổi. Đối với phương trình chứa căn thức bậc ba sau khi lập phương hai vế thu goạn hai vế, vế trái sẽ xuất hiện lại biểu thức vì vậy có thể thay biểu thức này bằng a để biến đổi đưa về phương trình mới. Tuy nhiên để vế trái xuất hiện biểu thức học sinh cần sử dụng linh hoạt hằng đẳng thức : khi đó có thể đưa phương trình đã cho về dạng A.B = 0 để giải. Ví dụ 2: Giải phương trình: (9). Giải: Điều kiện xác định Lập phương hai vế của phương trình (8) ta được: (9) 25 + x + 3 - x + 3. (10) Phương trình sau khi lập phương rất dài và nhìn rất phức tạp, tuy nhiên nếu ta sử dụng hằng đẳng thức biến đổi vế phương trình (10) và sử dụng điều kiện của đề bài thay vào phương trình (10) ta sẽ được một phương trình đơn giản hơn nhiều: Vì nên : (10) 28 + 12 12 (***) Lập phương hai vế của (***) ta được: (25 + x)(3 - x) = 27 - x2 - 22x + 75 = 27 x2 + 22x - 48 = 0 (x - 2)(x + 24) = 0 x = 2 hoặc x = - 24 Thử lại: + Với x = 2 ta có + Với x = - 24 ta có Vậy nghiệm của phương trình (8) là: x = 2; x = -24 Ví dụ 3: Giải phương trình : (11) + ở phương trình (11) học sinh cũng nhận xét có chứa căn bậc 3 nên nghĩ đến việc lập phương hai vế : Giải: Điều kiện xác định Lập phương hai vế (11) (12) thay vào phương trình (11) ta được: (13) Giải ra: ; thay lại vào phương trình (11) ta thấy nghiệm đúng, nên đó là 2 nghiệm của phương trình ban đầu. Vậy (11) có nghiệm . + ở phương trình (11) ngoài việc lập phương hai vế cần sử dụng hằng đẳng thức một cách linh hoạt để đưa phương trình về dạng đơn giản a.b = 0 rồi giải. Chú ý: Do từ (12) suy ra (13) ta thực hiện phép biến đổi không tương đương, vì nó chỉ tương đương khi x thoả mãn : . Vì vậy việc thay lại nghiệm của (12) vào phương trình đã cho là cần thiết. Nếu không thử lại có thể sẽ có nghiệm ngoại lai. e. Dạng 5: (V) Đối với phương trình (V) thông thường khi giải đa số học sinh biết phải nâng hai vế lên lũy thừa bậc ba, nhưng khi khai triển hằng đẳng thức ở vế trái gặp biểu thức phức tạp học sinh sẽ gặp khó khăn trong biến đổi. Dạng (V) giáo viên cần hướng dẫn và khắc sâu cho học sinh trong việc sử dụng hằng đẳng thức đã học biến đổi tiếp vế trái đưa về dạng A.B = 0. Ví dụ: Giải phương trình : . (13) Giải: Điều kiện xác định: Lập phương hai vế phương trình (13) ta được: (13) Ta thấy vế trái phương trình mới phức tạp hơn phương trình ban đầu. Để giải phương trình ta phải biến đổi vế trái bằng cách rút gọn đồng thời nhóm một vài hạng tử lại và đặt nhân tử chung: Theo đề bài : nên: (14) Ta lập phương 2 vế phương trình để biến đổi tiếp: Đến đây ta có thể hướng dẫn học sinh chuyển vế đưa về phương trình tích và giải được kết quả: x1=0; x2 = Vậy phương trình đã cho có ba nghiệm : x1=0; x2 =. Bài tập vận dụng : Bài 1 Giải phương trình Bài 2 Giải phương trỡnh Bài 3 Giải phương trỡnh Bài 4 Giải phương trỡnh . Bài 5 Giải phương trỡnh. Bài 6 Tỡm để phương trỡnh cú nghiệm Bài 7 Giải phương trỡnh : Bài 8 Giải phương trỡnh Bài 9Giải phương trỡnh : Đặt . Nghiệm Bài 10 Tỡm m để phương trỡnh cú nghiệm Bài 11 Giải phương trỡnh