Cách Giải Phương Trình Bậc 3 Trên Máy Tính / Top 6 # Xem Nhiều Nhất & Mới Nhất 1/2023 # Top View | Englishhouse.edu.vn

Cách Giải Phương Trình Bậc 3

( 1. Phương trình có dạng: 1), trong đó a, b, c, d là các số thực cho trước .

2. Cách giải: Bây giờ ta đi xét cách giải phương trình (1).

Vì ( nên ta có thể chia hai vế của phương trình (1) cho a. Do vậy ta chỉ cần đi giải phương trình dạng : 2) .

Đặt ((, khi đó 2) trở thành : 3)

Trong đó: .

Đặt . Để xét số nghiệm của (3), ta khảo sát sự tương giao của hàm số với trục Ox.

Chú ý hàm bậc ba cắt Ox tại

· Một điểm hàm luôn đơn điệu hoặc

· Hai điểm

· Ba điểm

Xét hàm số , ta có: .

* Nếu là hàm đồng biến có một nghiệm.

* Nếu và

.

Từ đây ta có các kết quả sau:

* Nếu có nghiệm duy nhất. Để tìm nghiệm này ta làm như sau:

Đặt , khi đó (3) trở thành:

Ta chọn u,v sao cho: , lúc đó ta có hệ:

(là nghiệm phương trình: 4)

( 4) có hai nghiệm:

(*)

Công thức (*) gọi là công thức Cardano.

* Nếu , khi đó (3) có hai nghiệm, một nghiệm kép ( hoặc ) và một nghiệm đơn. Tức là:

hoặc (**).

* Nếu , khi đó (3) có ba nghiệm phân biệt và ba nghiệm này nằm trong khoảng . Để tìm ba nghiệm này ta đặt , với ta đưa (3) về dạng: (5), trong đó .

Giải (5) ta được ba nghiệm , từ đây suy ra ba nghiệm của phương trình (3) là :

(***).

Trong một số trường hợp để giải phương trình bậc ba ta đi tìm một nghiệm rồi thực hiện phép chia đa thức và chuyển phương trình đã cho về phương trình tích của một nhị thức bậc nhất và một tam thức bậc hai.

Ví dụ 1: Giải phương trình : .

Giải: Ta thấy phương trình có một nghiệm (dùng MTBT) nên ta biến đổi phương trình : .

Ví dụ 2: Giải phương trình : .

Giải: Ta có: nên phương

trình có duy nhất nghiệm:

.

Ví dụ 3: Giải phương trình : (1).

Giải:

Ta có: nên phương trình có ba nghiệm thuộc khoảng . Đặt với

(2) trở thành:

.

Vì nên ta có: .

Vậy phương trình có ba nghiệm: .

Ví dụ 4: Tìm m để phương trình sau có ba nghiệm phân biệt

(1).

Giải: Vì tổng các hệ số của phương trình bằng 0 nên phương trình có nghiệm nên :

Phương trình (1) có ba nghiệm phân biệt có hai nghiệm phân biệt khác 1 .

Vậy là giá trị cần tìm.

Tìm m để đồ thị hàm số sau cắt trục Ox tại hai điểm phân biệt:

Giải:

Ta có phương trình hoành độ giao điểm:

(2)

Yêu cầu bài toán có hai nghiệm phân biệt.

TH 1: có hai nghiệm phân biệt, trong đó có một nghiệm

bằng 1. Điều này có .

TH 2: có một nghiệm khác 1. Khi đó xảy ra hai khả năng

Khả năng 1: .

Khả năng 2: .

Vậy các giá trị của m cần tìm là: .

Giải: Giả sử phương trình có ba nghiệm. Ta chứng minh (1).

* Nếu ba nghiệm của phương trình trùng nhau thì đúng.

* Nếu ba nghiệm phương trình chỉ có hai nghiệm trùng nhau hoắc ba nghiệm đó là phân biệt. Khi đó ta có: ,

( trong đó: )

.

đpcm.

Từ cách chứng minh trên ta suy ra được nếu có (1) thì phương trình có ba nghiệm

Nguyễn Tất Thu

Cách Giải Phương Trình Logarit Bằng Máy Tính

CÁCH GIẢI PHƯƠNG TRÌNH LOGARIT BẰNG MÁY TÍNH

Phương trình logarit hay phương trình bất kỳ đều có thể sử dụng chức năng TABLE hoặc SHIFT + SOLVE để tìm nghiệm gần đúng. Để thực hiện, chúng ta tiến hành theo 2 bước như sau:

Dùng chức năng TABLE để tìm khoảng chứa nghiệm.

Dùng tiếp TABLE để ra nghiệm gần đúng

hoặc dùng chức năng SHIFT + SOLVE để tìm nghiệm gần đúng.

VÍ DỤ MINH HỌA

Tính tích các nghiệm của phương trình sau

Hướng dẫn:

Bấm MODE 8 nhập hàm số

Chọn START  là 0, chọn END là 29, chọn STEP là 1.

Chúng ta dò cột f(x) để tìm những khoảng hàm số đổi dấu. Chẳng hạn như hình trên thì khoảng (1;2) hàm số đổi dấu từ âm sang dương.  Vậy trên khoảng này hàm số có ít nhất một nghiệm. Khoảng (0;1) có thể có nghiệm. Ta thấy các giá trị tiếp theo như f(3), f(4)… có xu hướng tăng (hàm đồng biến). Vậy ta chỉ còn 2 khoảng cần xét.

Bấm AC và dấu = để làm lại các bước trên nhưng với khoảng (0;1) và (1;2).

Với khoảng (0;1) ta chọn START 0 END 1 STEP 1/29. Ta được khoảng (0;0,0344) có thể có nghiệm.

Tiếp tục như vậy với khoảng (0;0,0344) ta chọn START 0 END 0,0344 STEP 0,0344/29 ta được nghiệm gần đúng thứ nhất.

Muốn nghiệm chính xác hơn nữa ta lặp lại với STRAT 0,0189 END 0,0201 STEP (0,0201-0,0189)/29, ta được:

Bộ đề thi Online các dạng có giải chi tiết: Hàm số lũy thừa – Mũ – Logarit

Như vậy nghiệm gần đúng thứ nhất là 0,01997586207.

Hoàn toàn tương tự như vậy với khoảng (1;2). Sau vài ba lần bấm máy tôi thu được một nghiệm gần đúng nữa là 1,852482759

Bây giờ thì bấm tích hai số này với nhau thôi phải không nào.

So với các phương án ta thấy gần với phương án C nhất. Vậy ta chọn C.

Cách Giải Phương Trình Bậc 3 Và Bài Tập Ứng Dụng

Cách giải phương trình bậc 3 sẽ được đề cập chi tiết trong bài viết này. Như chúng ta đã biết, khác hoàn toàn với phương trình bậc nhất và phương trình bậc hai đã được giới thiệu từ trước. Thì phương trình bậc ba có khá nhiều điểm khác như số nghiệm và cả về độ đẹp của các nghiệm nữa. Tùy vào các hệ số mà ta có những phương pháp khác nhau.

Phương pháp tổng quát

Bất kể loại phương trình nào đều có phương pháp riêng để tiến hành giải. Hay còn gọi là những công thức tổng quát. Riêng phương trình bậc ba chúng ta sẽ tìm hiểu thông qua 3 hướng tiếp cận dựa vào mối liên hệ giữa các hệ số như sau:

Phương pháp phân tích thành nhân tử

Đây là phương pháp khá đơn giản tuy nhiên điều kiện của phương trình phải là có nghiệm đẹp. Nghiệm đẹp ở đây có thể là số nguyên hoặc là phân số. Sau khi tìm được nhân tử chung thứ nhất thì việc còn lại chỉ là giải một phương trình bậc hai vô cùng đơn giản

Khi một phương trình bậc 3 [a{{x}^{3}}+b{{x}^{2}}+cx+d=0] có nghiệm [x=r] thì chắc chắn nó sẽ xuất hiện nhân tử [left( xr right)]. Sau khi tìm được nghiệm chung, ta tiến hành phân tích thành nhân tử qua các bước sau:

Bước 1: Tìm nghiệm đơn giản của phương trình. Đối với các bài toán này thường có nghiệm khá đơn giản như 0,1,2,3. Nếu phức tạp hơn một tí thì có thể dùng máy tính casio để nhẩm nghiệm với chức năng solve.

Bước 2: Sau khi có nghiệm, ta tiến hành phép phân tích phân tử bằng cách chia tách các hệ số, sơ đồ hoocne hoặc phương pháp đồng nhất thức đều được cả.

Phương pháp Cardano

Phương pháp thiên về việc đặt ẩn phụ và khá phức tạp. Tuy nhiên lợi thế của phương pháp này là giải quyết hầu hết các bài tập phương trình bậc ba mà không cần quan tâm đến hệ số cũng như kết quả nghiệm xấu hay là đẹp. Đây là phương pháp giải được cho là tổng quát nhất và cũng khá là phức tạp:

Xét phương trình bậc 3: [{{x}^{3}}+a{{x}^{2}}+bx+c=0] (1)

Đặt [x=yfrac{a}{3}] thì phương trình (1) luôn biến đổi về dạng chính tắc là [{{y}^{3}}+py+q=0] trong đó:

Trường hợp này ta chỉ xét [p,qne 0] còn trường hợp bằng 0 thì sẽ đưa về dạng đơn giản hơn rất nhiều.

Cách Giải Phương Trình Bậc 4

Ở bài trước chúng ta đã nghiên cứu cách giải phương trình bậc ba. Trong bài này chúng ta đi nghiên cứu cách giải một sô phương trình có bậc cao hơn 3. Phương pháp chung để giải phương trình bậc cao là ta tìm cách chuyển về phương trình có bậc thấp hơn, thường chúng ta chuyển về phương trình bậc hai. Để làm điều này ta thường sử dụng các phương pháp sau:

1. Phương pháp đưa về dạng tích : Tức là ta biến đổi phương trình :

.

Để đưa về một phương trình tích ta thường dùng các cách sau:

Cách 2 : Nhẩm nghiệm rồi chia đa thức: Nếu là một nghiệm của phương trình thì ta luôn có sự phân tích: . Để dự đoán nghiệm ta dựa vào các chú ý sau:

Chú ý : * Nếu đa thức có nghiệm nguyên thì nghiệm đó phải là ước của .

* Nếu đa thức có tổng các hệ số bằng 0 thì đa thức có một nghiệm * Nếu đa thức có tổng các hệ số chẵn bằng tổng các hệ số lẻ thì đa thức có một nghiệm.

: Sử dụng phương pháp hệ số bất định. Ta thường áp dụng cho phương trình trình bậc bốn.

Ví dụ 1 : Giải phương trình : (1) .

Giải:

Ta có phương trình (1.1)

. Vậy phương trình có hai nghiệm: .

: Mẫu chốt của cách giải trên là chúng ta nhận ra hằng đẳng thức và biến đổi về phương trình (1.1). Trong nhiều phương trình việc làm xuất hiện hằng đẳng thức không còn dễ dàng như vậy nữa, để làm điều này đòi hỏi chúng ta phải có những nhạy cảm nhất định và phải thêm bớt những hạng tử thích hợp.

Ví dụ 2 : Giải phương trình : .

Giải: Phương trình

.

Vậy PT đã cho có 4 nghiệm: .

Chú ý :

1) Chắc hẳn các bạn sẽ thắc mắc làm sao mà ta biết cách tách như trên ?!. Thật ra thì chúng ta làm như sau:

Phương trình .

Ta chọn m sao cho biểu thức trong dấu phân tích được hằng đẳng thức, để có điều này ta phải có:

, phương trình này có một nghiệm , do đó ta có thể phân tích như trên.

Với phương trình bậc bốn tổng quát (I) ta cũng

có thể biến đổi theo cách trên như sau:

Ta cộng thêm hai vế của phương trình một lượng:

(1.I).

Bây giờ ta chỉ cần chọn sao cho VT của (1.I) phân tích thành hằng đẳng thức, tức là :

(2.I)

Đây là phương trình bậc ba nên bao giờ cũng có ít nhất một nghiệm. Khi đó ta sẽ đưa phương trình (1.I) về phương trình tích của hai tam thức bậc hai, từ đây ta giải hai tam thức này ta được nghiệm phương trình (I).

2) Về mặt lí thuyết thì ta có thể giải được mọi phương trình bậc bốn theo cách trên. Tuy nhiên trên thực tế thì nhiều lúc việc giải không được dễ dàng vậy, vì mẫu chốt quan trọng nhất của cách giải trên là tìm . Mặc dù (2.I) đã có cách giải nhưng không phải giá trị lúc nào cũng “đẹp”, nên sẽ khó khăn cho các phép biến đổi của chúng ta.

Ví dụ 3: Giải phương trình : (4).

, phương trình này có nghiệm: .

Do vậy

,

và .

Đưa về phương trình tích ngoài cách tạo ra hằng đẳng thức ở trên, ta còn có cách khác là sử dụng phương trình hệ số bất định. Chẳng hạn xét ví dụ trên. Ta phân tích:

Khai triển rồi đồng nhất các hệ số ta có được hệ phương trình :

.

Từ phương trình cuối ta chọn: , thay vào ba phương trình đầu ta có:

ta thấy hệ này vô nghiệm, do đó ta chọn , thay vào ta giải được và

Vậy: .

Tìm m để phương trình sau có bốn nghiệm phân biệt.

(5).

Khi gặp bài toán này có lẽ các bạn sẽ suy nghĩ không biết nên xử lí theo hướng nào? Vì phương trình này không có nghiệm đặc biệt, nếu sử dụng phương trình phân tích bình phương thì việc giải phương trình (2.I) e rằng sẽ không đi đến kết quả ! Vậy phương pháp hệ số bất định thì sao? Chú ý đến hệ số tự do của phương trình ta thấy: Giải: , điều này dẫn tới ta nghĩ đến phân tích VT của phương trình về dạng: (mục đíc là làm giảm số ẩn cần tìm xuống còn 2 ẩn). Đồng nhất hệ số ta có hệ phương trình :

.

Vậy

(5) có bốn nghiệm phân biệt và (b) đều có hai nghiệm phân biệt và chúng không có nghiệm chung.

* (a) và (b) cùng có hai nghiệm phân biệt

* Giả sử (a) và (b) có nghiệm chung là , khi đó là nghiệm của hệ: , hệ này vô nghiệm và (b) không có nghiệm chung. Vậy là những giá trị cần tìm.

: Việc nhận thấy Nhận xét là mẫu chốt hạn chế khó khăn trong việc phân tích ra thừa số. Đây là một tính chất của đa thức rất hay được sử dụng trong việc phân tích một đa thức thành các nhân tử. Cụ thể : Nếu tam thức bậc hai (tương tự cho đa thức)

có hai nghiệm thì ta luôn có sự phân tích . Với phương trình trên ta không sử dụng được tính chất này vì vế trái là một đa thức bậc 4 không có nghiệm đặc biệt. Tuy nhiên nếu chúng ta nhạy bén thì ta thấy VT của phương trình lại là một tam thức bậc hai đối với ẩn là tham số m. Tức là ta có:

(5′)

Tam thức này có :

Suy ra (5′) có hai nghiệm

và . Do vậy ta có:

. Đây là phương trình mà ta vừa biến đổi ở trên.

Ví dụ 5: Giải phương trình : .

Đặt Giải: , ta có :

.

Vậy nghiệm của phương trình đã cho là:

.

: Giải phương trình : Ví dụ 6 .

Giải:

Ta có phương trình

.

Vậy phương trình đã cho có bốn nghiệm: .

Ví dụ 7 : Tìm m để phương trình có bốn nghiệm phân biệt.

Giải:

PT:

.

Phương trình đã cho có bốn nghiệm phân biệt và (b) đều có hai nghiệm phân biệt và chúng không có nghiệm chung.

(a) và (b) có hai nghiệm phân biệt .

Giả sử (a) và (b) có nghiệm chung là

.

Vậy là những giá trị cần tìm.

Nguyễn Tất Thu