Cách Giải Hệ Phương Trình Toán Lớp 9 / 2023 / Top 16 # Xem Nhiều Nhất & Mới Nhất 12/2022 # Top View | Englishhouse.edu.vn

Toán Bdhsg Phương Trình Và Hệ Phương Trình (Lớp 9) / 2023

Toán BDHSG phương trình và hệ phương trình. (lớp 9) Bài toán 1: Giải phương trình Bổ đề : Với Giải: Điều kiện : , Ta có mà . Dấu bằng xảy ra khi và chỉ khi . Vậy phương trình có nghiệm x = 6 Hoặc: Áp dung bất đẳng thức Cô si cho hai số không âm ta có . Dấu bằng xảy ra khi và chỉ khi . Bài toán 2: Giải phương trình: Vì và nên Áp dụng bất đẳng thức Cô si mỗi số hạng của vế trái ta được: (1) (2) Cộng (1) và (2) vế theo vế ta có: nên theo đề ta có :. Đẳng thức xảy ra khi x = 1 . Thử lại ta thấy x = 1 thoả . Vậy phương trình có nghiệm là x = 1. Bài toán 3: Giải phương trình: (1) Điều kiện tồn tại phương trình: (*) Vế phải của (1): . Đẳng thức xảy ra khi và chỉ khi x = 2. Áp dụng bất đẳng thức Bunhiacôpxki thoả mãn (*) thì vế trái của phương trình (1): . Đẳng thức xảy ra khi và chỉ khi . Đẳng thức xảy ra ở phương trình (1) là 2 nên x = 2 là nghiệm của phương trình. Hoặc Áp dụng bất đẳng thức Cô si cho hai số không âm ta có:. Đẳng thức xảy ra khi và chỉ khi . Đẳng thức xảy ra ở phương trình (1) là 2 nên x = 2 là nghiệm của phương trình. Bài toán 4: Giải phương trình: . (1) Giải: Điều kiện (2). Vế trái của phương trình (1): với mọi x. đẳng thức xảy ra khi x = 1. Theo bất đẳng thức Bunhiacôpxki với mọi x thoả mãn (2) thì vế phải của phương trình (1) thoả: . đẳng thức xảy ra khi . Để đẳng thức xảy ra ở phương trình (1) thì cả hai vế của phương trình (1) đều bằng 2. Nên x = 1. Thử lại thấy x = 1 là nghiệm của phương trình. Bài toán 5: Giải phương trình: (1) Giải: Điều kiện Do với mọi x nên Đặt ; với . Nên phương trình (1) trở thành : Giải phương trình này được hoặc Với thì phương trình (1) vô nghiệm Với thì . Phương trình có hai nghiệm thoả điều kiện ; . Bài toán 6: Giải phương trình: (1) Phương trình (1) có nghĩa khi x < 5 nên Bài toán 7: Giải phương trình: (1) Điều kiện để phương trình có nghĩa là : . Bình phương hai vế của phương trình (1) ta được: . Giải phương trình này được . Thử lai chỉ có hai nghiệm x = 0; x = 6 thoả mãn đề cho. Bài toán 8: Giải phương trình: (1) Cách giải khác: Đặt ; nên .Do đó phương trình (1) trở thành: (*) Từ hệ (*) suy ra khi đó ta cũng có x = -1. Bài toán 9: Giải phương trình: (1) Giải: Điều kiện (*). Đặt ; . Nên phương trình (1) trở thành Nếu b = 1 thì so với điều kiên (*) thoả Nếu a = 4 thì so với điều kiên (*) thoả. Vậy phương trình có nghiệm là . Bài toán 10: Giải phương trình: (*) Lập phương hai vế của phương trình (*) ta được: hoặc . Thử lại ta thấy phương trinh có đúng ba nghiệm trên. Bài toán 11: Giải phương trình (1) Điều kiện: . Đặt ; ; nên phương trình (1) trở thành Nếu a = 1 thì Nếu b = 1 thì . Vậy x = 0 là một nghiệm của phương trình. Bài toán 12: Giải phương trình (1) Giải: TXĐ . Đặt ; . Nên phương trình đã cho trở thành: Nên Do đó Nếu thì ; thì Nếu thì ; thì Nếu thì ; thì Vậy phương trình có ba nghiệm là Bài toán 13:Giải phương trình (*) Giải: Điều kiện để phương trình có nghĩa là và hay . Thử thấy là một nghiệm của phương trình (*) Với thì và .Suy ra Với thì và .Suy ra Vậy x = là nghiệm của phương trình. Bài toán 14: Giải phương trình : . Giải: Đ ặt : Suy ra . Do đó phương trình đã cho sẽ là nên Khai triển và thu gọn được: . Nếu Nếu . Phương trình này có nghiệm Nếu . Phương trình này vô nghiệm Vậy phương trình có ba nghiệm . Bài toán 15: Tính giá trị của biểu thức: trong đó a là nghiệm của phương trình . Gọi S Bài toán 16: Giải phương trình: Giải: Đặt . Do đó phương trình đã cho trở thành hệ phương trình: (1).Từ hệ phương trình (1) ta suy ra (2) Từ hệ phương trình (1) suy ra:. Nên .Do đó từ (2) suy ra hay x = y. Thay vào hệ (1) ta được hoặc . Nhưng x = 0 không là nghiệm của phương trình nên phương trình có nghiệm là x = 2001. Bài toán 17: Giải phương trình . Điều kiện của phương trình: Ta có hoặc hoặc hoặc . là một nghiệm của phương trình. Bài toán 18: Giải phương trình Giải : ĐKXĐ: Từ phương trình trên ta có . Với nên chia hai vế của phương trình cho ở mẫu ta được :. Đặt . Khi đó ta có . Quy đồng khử mẫu ta được: Do đó Quy đồng khử mẫu ta được Giải phương trình ta được nghiệm: Vậy phương trình có hai nghiệm là Bài toán 19: Giải hệ phương trình: Giải: Từ (1) suy ra . Tương tự từ (2) và (3) suy ra . Vì hệ số không đổi khi ta hoán vị vòng quanh đối với x; y; z có thể giả thiết x = max(x, y, z) . Nghĩa là . Trừ tường vế của phương trình (3) cho phương trình (1) ta được . Vì nên và . Do đó phương trình (4) . Thay vào phương trình (1) ta được: . Do đó x = y = z = . Bài toán 20: Cho hệ phương trình Nếu có (x; y) thoả (2) . Chứng minh rằng Giải hệ phương trình trên Giải: Từ phương trình (2) có: . Phương trình bậc hai ẩn x có nghiệm: b) Tương tự phương trình bậc hai ẩn y có nghiệm: Do và nên . Đẳng thức xảy ra và . Khi và thì thay vào phương trình (2) vô nghiệm. Nên hệ đã cho vô nghiệm. Bài toán 21 : Giải hệ phương trình: (*) (*) Thế phương trình (2) vào phương trình (1) ta có: và . Thử lại được 4 nghiệm:. Bài toán 22: Giải hệ phương trình: Giải : Hệ (*) . Đặt . Khi đó hệ trở thành: hoặc . Nếu suy ra Nếu suy ra . Nên x; (-y) là nghiệm của phương trình bậc hai Nếu x = thì ; Nếu x = thì ; Vậy hệ đã cho có nghiệm là: . Bài toán 23: Cho hệ phương trình: . Tính . Giải: Từ (1) suy ra (3) Từ có (4) Từ (3) và (4) . Do đó . Vậy . Bài toán 24: Giải hệ phương trình: Giải: Từ phương trình (2) suy ra . Từ phương trình (1) suy ra . Nên . Giải phương trình bậc hai ẩn y được hai nghiệm : Nếu thì ; Nếu thì Vậy hệ phương trình có nghiệm là: . Bài toán 25: Giải hệ phương trình: (*) Hệ phương trình (*) tương đương Giải phương trình : có ba nghiệm ; Nếu ; Nếu Nếu Vậy hệ phương trình có ba nghiệm Bài toán 26: Giải hệ phương trình . Giải: Từ phương trình (1) suy ra . Giải phương trình bậc hai ẩn y có hai nghiệm . Nên hệ phương trình trên tương đương: hoặc . Giải hệ phương trình : . Giải hệ phương trình có nghiệm . Vậy hệ phương trình có nghiệm là:. Bài toán 27: Giải hệ phương trình (Đề thi chuyên Lê Khiết năm học 2008- 2009) Điều kiện của hệ:; Khi đó ta có: Do điều kiện; Thay x = y vào phương trình ta có: So với điều kiện (loại). V ậy hệ phương trình đã cho có nghiệm Cách giải khác: Điều kiện của hệ; Ta có: Giả sử suy ra nên (vô lý) Giả sử suy ra nên (vô lý) Nên suy ra . Thay x = y vào hệ ta có phương trình: So với điều kiện (loaị). Vậy hệ phương trình đã cho có nghiệm . Bài toán 28: Giải hệ phương trình: Giải: Điều kiện . Nhân mỗi phương trình với 2 ta có: . Bài toán 29 Giải hệ phương trình sau: Giải: Giả sử bộ ba số là nghiệm của hệ phương trình trên thì và cũng là nghiệm của phương trình này. Giả sử x là số lớn nhất (4) Từ (1) ta có . Tương tự từ phương trình (2) và (3) ta cũng có . (5) Trừ từng vế của (1) và (3) ta được:. (6) Theo (4) và (5) suy ra . Nên từ (6) suy ra Thay (7) vào (1) ta được: . Vậy hệ có nghiệm duy nhất Bài toán 30: Tìm x, y, z biết . Điều kiện: . Đặt. Do a.b.c nên ta có Do đó x = y và z tuỳ ý ; y = z và x tuỳ ý Hoặc cách giải khác: Do đó x = y và z tuỳ ý hoặc y = z và x tuỳ ý. (đpcm). Bài toán 32: Cho tam giác có số đo các đường cao là các số nguyên, bán kính đường tròn nội tiếp tam giác bằng 1. Chứng minh tam giác đó là tam giác đều. Giải: Gọi x, y, z lần lượt là độ dài các đường cao ứng với các cạnh a, b, c của tam giác, đường cao của tam giác luôn lớn hơn đường kính đường tròn nội tiếp tam giác đó, nghĩa là . Vì x, y, z là các số nguyên dương nên . Mặt khác ta lại có: nên tam giác ABC đều. Bài toán 33: Cho phương trình . Tìm giá trị của tham số m để phương trình có 4 nghiệm phân biệt thoả mãn . Giải: Đặt khi đó phương trình (*) trở thành . Phương trình (*) có nghiệm phân biệt nên phương trình (1) có hai nghiệm dương phân biệt ngh ĩa l à: Khi m <-2 thì phương trình (*) có 4 nghiệm ; và . Từ giả thiết suy ra vì Bài toán 34: Chứng minh rằng nếu phương trình (*) có hai nghiệm thoả mãn thì . Giải: Nếu phương trình (*) có hai nghiệm thì đa thức bậc bốn ở vế trái của phương trình phân tích được : (vì và ) . Đồng nhất thức hai vế của phương trình trên ta được : Giải hệ phương trình trên ta được . Cách giải 2: Vì và đều là nghiệm của phương trình (*) nên ta có: . Có ba trường hợp xảy ra Trường hợp 1: Nếu . Đa thức vế trái chia hết cho nên đa thức dư đồng nhất phải bằng 0. Bằng phép chia đa thức cho đa thức ta được: Trường hợp 2: Nếu . Tương tự trường hợp (1) ta cũng có Trường hợp 3: Nếu thì là nghiệm của phương trình . Chia đa thức (*) cho ta được đa thức dư đồng nhất bằng 0 có . Cách giải 3: Vì không là nghiệm của phương trình (*) nên chia hai vế cho ta được:. Đặt nên phương trình trở thành . Đặt . Áp dụng định lý Viet cho phương trình (2) . Thay vào (3) và biến đổi ta được . Phương trình (2) có hai nghiệm . Nếu mới chỉ là một nghiệm của phương trình (2) vậy ta phải xét thêm các trường hợp 1) 2) như cách giải 2: Bài tập về nhà về phương trình và hệ phương trình 1)Giải các phương trình sau: a) KQ: x = 1; x = 36 b) Giải các hệ phương trình sau: a) KQ: b) KQ: c) KQ: d) Bài tập về nhà: 1) 2) 3) 4) 5) 6) 7) 8)

Giải Toán Bằng Cách Lập Hệ Phương Trình / 2023

Giải toán bằng cách lập hệ phương trình

A. Phương pháp giải

Trình tự các bước giải bài toán bằng cách lập hệ phương trình

* Bước 1: Lập hệ phương trình.

+ Biểu diễn hai đại lượng phù hợp bằng ẩn số x và y. Đặt đơn vị và điều kiện của ẩn.

+ Biểu thị các đại lượng chưa biết qua ẩn.

+ Lập hai phương trình biểu thị mối quan hệ giữa các đại lượng và thành lập hệ hai ẩn từ các phương trình vừa tìm.

* Bước 2: Giải hệ phương trình nói trên.

* Bước 3: Kiểm tra nghiệm tìm được thỏa mãn điều kiện của bài toán và nêu kết luận của bài toán.

B. Bài tập tự luận

Bài 1: Một mảnh vườn hình chữ nhật có chu vi 34m. Nếu tăng chiều dài thêm 3m và tăng chiều rộng thêm 2m thì diện tích tăng thêm 45m 2. Hãy tính chiều dài, chiều rộng của mảnh vườn.

Theo đề bài ta có:

Chu vi hình chữ nhật là: 2(x + y) = 34. (1)

Hình chữ nhật mới có chiều dài (y + 3)m, chiều rộng (x +2)m nên có diện tích là (x + 2)(y + 3). Do hình chữ nhật mới có diện tích tăng thêm 45m 2 nên ta có phương trình:

(x+2)(y+3)= xy + 45 (2)

Từ (1) và (2) ta có hệ phương trình:

Bài 2: Tìm số có hai chữ số, biết rằng nếu đổi chỗ hai chữ số của nó thì được một số lớn hơn số đã cho là 72 và tổng của số mới và số đã cho là 110.

Hướng dẫn giải

Vậy số cần tìm là 19.

Bài 3: Hai thị xã A và B cách nhau 90km. Một chiếc ôtô khởi hành từ A và một xe máy khởi hành từ B cùng một lúc ngược chiều nhau. Sau khi gặp nhau ôtô chạy thêm 30 phút nữa thì đến B, còn xe máy chạy thêm 2 giờ nữa mới đến A. Tìm vận tốc của mỗi xe.

Hướng dẫn giải

Giả sử hai xe gặp nhau tại C. Do ôtô đi hết quãng đường BC trong 30 phút (= 0,5h) và xe máy đi hết quãng đường CA trong 2 giờ nên ta có:

Quãng đường AC dài 2y (km), quãng đường BC dài 0,5x (km).

Thời gian ôtô đi hết quãng đường AC là 2y/x (km/h).

Thời gian xe máy đi trên quãng đường BC là 0,5x/y (km/h).

Do tổng quãng đường AB dài 90km và thời gian hai xe từ lúc xuất phát tới C bằng nhau nên ta có hệ phương trình

Vận tốc của ôtô là 60km/h và vận tốc của xe máy là 30km/h.

Bài 4: Một xe máy đi từ A đến B trong một thời gian dự định. Nếu vận tốc tăng thêm 14km/h thì đến B sớm hơn dự định 2 giờ. Nếu giảm vận tốc đi 4km/h thì đến B muộn hơn 1 giờ. Tính vận tốc và thời gian dự định của người đó.

Khi đó quãng đường là xy (km/h)

Nếu vận tốc tăng thêm 14km/h thì đến B sớm hơn dự định 2giờ nên ta có phương trình (x+14)(y-2)=xy (1)

Nếu vận tốc giảm đi 4km/h thì đến B muộn hơn 1 giờ nên ta có phương trình (x-4)(y+1)=xy (2)

Nhóm học tập facebook miễn phí cho teen 2k6: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Cách Giải Bài Toán Bằng Cách Lập Phương Trình Và Hệ Phương Trình / 2023

Chọn ẩn và tìm điều kiện của ẩn (thông thường ẩn là đại lượng bài toán yêu cầu tìm).

Biểu thị các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

Lập phương trình (hệ phương trình) biểu thị mối quan hệ giữa các đại lượng.

Một số dạng toán điển hình và hương dẫn cách giải cụ thể

Dạng 1: Chuyển động (Trên đường bộ, trên dòng sông có tính đến dòng nước chảy)

Gọi độ dài đoạn đường bằng là x (0 < x < 90) (km)

Tổng thời gian người đó đi là: 12 – 8 – 1,5 = 2,5 (h)

Thời gian người đó đi trên quãng đường bằng là: 2x/80 (h)

Thời gian người đó lên dốc là: (90-x)/48 (h)

Thời gian người đó xuống dốc là: (90-x)/90 (h)

Theo bài ra, ta có:

2x/80 + (90-x)/48 + (90-x)/90 = 2.5

⇒ (18x + 15(90-x) +8(90-x) )/720 = 2.5

⇒ 18x – 15x – 8x = 1800 – 720 – 1350

⇒ -5x = -270

⇒ x = 54 (thỏa mãn)

Kết luận: Quãng đường bằng dài 54 km.

Gọi vận tốc của thuyền khi nước lặng là x và vận tốc của dòng nước là y

Lại có tổng thời gian ca nô xuôi ngược trên AB dài 40 km hết 4h 30 phút

Theo bài ra, ta có hệ phương trình:

5/(x+ y) = 4/(x -y) (I) và 40/(x+ y) + 40/(x -y) = 4,5 (II)

Từ (I) suy ra: y = x – 16

Thay y = x – 16 vào (2), ta được:

Kết luận: Vận tốc dòng nước là 2 km/h.

Dạng 2: Toán làm chung – làm riêng (toán vòi nước, công việc)

⇒ Thời gian để vòi B một mình chảy đầy bể là x + 2 (giờ)

Trong một giờ vòi A chảy được: 1/x (bể)

Trong một giờ vòi A chảy được: 1/(x+2) (bể)

Trong một giờ cả hai vòi chảy được: 1/x + 1/(x+2) = (2x+2)/(x (x+2) ) (bể)

Suy ra, thời gian để hai vòi chảy đầy bể là:

1 : ( (2x+2)/(x.(x+2) ) = (x (x+2))/(2 (x+1))

Theo bài ra, ta có phương trình:

x.(x + 2) = 4.(x.(x+2))/(2.(x+1))

⇒ 2x.(x +1).(x + 2) = 4x.(x + 2)

⇒ x + 1 = 2 (chia cả 2 vế cho 2x (x + 2) # 0)

⇒ x = 1 (thỏa mãn)

Vậy vòi A cần 1 giờ để chảy đầy bể, vòi B cần 3 giờ để chảy đầy bể.

Gọi số giờ tổ 1 một mình làm xong công việc là x

số giờ tổ 2 một mình làm xong công việc là y

Trong 1 giờ, cả hai tổ làm được 1/x + 1/y = 1/12 (công việc)

Khi mỗi người làm một nửa công việc, ta có: x/2 + y/2 = 25

Theo bài ra, ta có hệ phương trình:

1/x + 1/y = 1/12 (I) và x/2 + y/2 = 25 (II)

Từ (II) ⇒ x = 50-y

Thay x = 50 – y vào (I), ta được:

1/(50-y) + 1/y = 1/12 ⇒ y = 20 hoặc y = 30 ⇒ x = 30 hoặc x = 20

Kết luận: Tổ 1 làm một mình hết 20 giờ, tổ 2 làm một mình hết 30 giờ (hoặc ngược lại)

Suy ra chiều rộng của mảnh vườn là 2/3 x (m)

Chiều dài của mảnh vườn sau khi giảm 5m là x – 5 (m)

Chiều rộng của mảnh vườn sau khi giảm 5m là 2/3 x – 5 (m)

Diện tích của mảnh vườn sau khi cắt bớt là:

(x – 5) (2/3 x – 5) = 2/3 x 2 – 5x – 10/3 x + 25 = (2x 2-25x+75)/3

Phần diện tích giảm đi 16% là:

Theo bài ra, ta có phương trình:

⇒ 8x 2 – 625x +1875 = 0

⇒ x = 75 hoặc x = 25/8 (loại vì 25/8<5 )

Suy ra chiều rộng của mảnh vườn là 50m

Kết luận: Diện tích của mảnh vườn ban đầu là: 75 x 50 = 3750 (m 2)

Gọi số cây nhóm một trồng được trong tháng năm là x

số cây nhóm hai trồng được trong tháng năm là y

Suy ra số cây nhóm một trồng được trong tháng sáu là 15% x = 115x/100 (cây)

số cây nhóm hai trồng được trong tháng sáu là 12% y = 112y/100 (cây)

Theo bài ra, ta có hệ phương trình:

x + y = 720 và 115x/100+ 112y/100 = 720 + 99

Giải hệ ta được: x = 420 và y = 300

Kết luận: Nhóm một đã trồng được 420 cây trong tháng năm, nhóm hai đã trồng được 300 cây trong tháng năm.

Dạng 4: Toán có nội dung hình học

Suy ra chiều rộng của tấm bìa là x – 17 (cm)

Áp dụng định lý Py – ta – go, ta có phương trình:

⇒ 2x 2 – 34 x – 2520 = 0

⇒ x = 45 hoặc x = -28 (loại)

Suy ra chiều rộng của tấm bìa là 28 (cm), Chu vi của tấm bìa các tông là 146 (cm)

Gọi chiều dài của thửa ruộng là x, chiều rộng của thửa ruộng là y

Suy ra chiều dài sau khi cắt bớt là 1-1/5 x = 4/5 x (m)

Chiều rộng sau khi tăng thêm là 1+ 1/4 x = 5/4 y (m)

Nưa chu vi thửa ruộng đó là: 450 : 2 = 225 (m)

Theo bài ra, ta có hệ phương trình:

x + y = 225 và 4/5 x+ 5/4 y = 225

Giải ra ta được: x=125 và y = 100 (thỏa mãn)

Diện tích ban đầu của thửa ruộng đó là 125 x 100 = 12500 (m 2)

Suy ra số tuổi của bà Dương hiện tại là x + 56 (tuổi)

Số tuổi của Dương cách đây 5 năm là x – 5 (tuổi)

Số tuổi của bà Dương cách đây 5 năm là x + 56 – 5 = x + 51 (tuổi)

Theo bài ra, ta có phương trình:

8 (x – 5) = x + 51

⇒ 8x – 40 = x + 51

⇒ 8x – x = 40 + 51

⇒ 7x = 91

⇒ x = 13

Vậy số tuổi của Dương là 13, số tuổi của bà là 69.

Gọi số vị vua là x, số hoàng hậu là y (0 < x, y < 45)

Theo bài ra, ta có hệ phương trình:

x + y = 45 và (35x + 45y)/45 = 40

Giải ra ta được: x = 15 và y = 30 (thỏa mãn)

Vậy có 15 vị vua, 30 hoàng hậu.

Lời kết: Chúng ta có thể thấy những bài toán trên nếu giải theo phương pháp thông thường sẽ mất rất nhiều thời gian, nhưng khi ta lập được phương trình và hệ phương trình sẽ trở nên đơn giản hơn. Vì vậy, Gia Sư Việt mong rằng các em nắm chắc từng bước giải bài toán bằng cách lập phương trình & hệ phương trình để áp dụng làm bài thi hiệu quả nhất.

♦ Phương pháp giải bài toán về Đường tròn môn Hình học lớp 9

♦ Khái niệm, tính chất và cách chứng minh Tứ giác là Hình vuông

♦ Khái niệm, tính chất & cách chứng minh Tứ giác là Hình chữ nhật

Sách Giải Bài Tập Toán Lớp 9 Bài 4: Giải Hệ Phương Trình Bằng Phương Pháp Cộng Đại Số / 2023

Sách giải toán 9 Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 9 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 17: Áp dụng quy tắc cộng đại số để biến đồi hệ (I), nhưng ở bước 1, hãy trừ từng vế hai phương trình của hệ (I) và viết ra các hệ phương trình mới thu được.

Trừ từng vế hai phương trình của hệ (I) ta được phương trình:

(2x – y) – (x + y) = 1 – 2 hay x – 2y = -1

Khi đó, ta thu được hệ phương trình mới:

Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 17: Các hệ số của y trong hai phương trình của hệ (II) có đặc điểm gì ?

Lời giải

Hệ số của y trong hai phương trình của hệ (II) đối nhau (có tổng bằng 0)

Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 18:

a) Nếu nhận xét về các hệ số của x trong hai phương trình của hệ (III).

b) Áp dụng quy tắc cộng đại số, hãy giải hệ (III) bằng cách trừ từng vế hai phương trình của (III).

Lời giải

a) Hệ số của x trong hai phương trình của hệ (III) giống nhau

Lấy phương trình thứ nhất trừ đi phương trình thứ hai vế với vế, ta được: 5y = 5

Do đó

Vậy hệ phương trình có nghiệm duy nhất (7/2;1)

Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 18: Giải tiếp hệ (IV) bằng phương pháp đã nêu ở trường hợp thứ nhất.

Lấy phương trình thứ nhất trừ đi phương trình thứ hai vế với vế, ta được: -5y = 5

Do đó

Vậy hệ phương trình có nghiệm duy nhất (3; -1)

Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 18: Nêu một cách khác để đưa hệ phương trình (IV) về trường hợp thứ nhất ?

Lời giải

Chia cả 2 vế của phương trình thứ nhất cho 3 và 2 vế của phương trình thứ hai cho 2 ta được:

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Bài 20 (trang 19 SGK Toán 9 tập 2): Giải các hệ phương trình sau bằng phương pháp cộng đại số:

Lời giải

(Các phần giải thích học sinh không phải trình bày).

Vậy hệ phương trình có nghiệm duy nhất (2; -3).

Vậy hệ phương trình có nghiệm duy nhất (3; -2).

(Nhân hai vế pt 1 với 2, pt 2 với 3 để hệ số của y đối nhau)

Vậy hệ phương trình có nghiệm duy nhất (-1; 0).

Vậy hệ phương trình có nghiệm duy nhất (5; 3).

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Bài 20 (trang 19 SGK Toán 9 tập 2): Giải các hệ phương trình sau bằng phương pháp cộng đại số:

Lời giải

(Các phần giải thích học sinh không phải trình bày).

Vậy hệ phương trình có nghiệm duy nhất (2; -3).

Vậy hệ phương trình có nghiệm duy nhất (3; -2).

(Nhân hai vế pt 1 với 2, pt 2 với 3 để hệ số của y đối nhau)

Vậy hệ phương trình có nghiệm duy nhất (-1; 0).

Vậy hệ phương trình có nghiệm duy nhất (5; 3).

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Bài 21 (trang 19 SGK Toán 9 tập 2): Giải các hệ phương trình sau bằng phương pháp cộng đại số:

Lời giải

(Các phần giải thích học sinh không phải trình bày).

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Bài 21 (trang 19 SGK Toán 9 tập 2): Giải các hệ phương trình sau bằng phương pháp cộng đại số:

Lời giải

(Các phần giải thích học sinh không phải trình bày).

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số Luyện tập (trang 19-20 sgk Toán 9 Tập 2)

Bài 22 (trang 19 SGK Toán 9 tập 2): Giải các hệ phương trình sau bằng phương pháp cộng đại số:

Lời giải

(Các phần giải thích học sinh không phải trình bày).

Phương trình 0x = 27 vô nghiệm nên hệ phương trình vô nghiệm.

Phương trình 0x = 0 nghiệm đúng với mọi x.

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số Luyện tập (trang 19-20 sgk Toán 9 Tập 2)

Bài 23 (trang 19 SGK Toán 9 tập 2): Giải hệ phương trình sau:

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số Luyện tập (trang 19-20 sgk Toán 9 Tập 2)

Bài 24 (trang 19 SGK Toán 9 tập 2): Giải các hệ phương trình sau:

Lời giải Bài toán này có hai cách giải:

Cách 1: Thu gọn từng phương trình ta sẽ thu được phương trình bậc nhất hai ẩn x và y.

Cách 2: Đặt ẩn phụ.

(Nhân hai vế pt 1 với 2; pt 2 với 3 để hệ số của y đối nhau)

Vậy hệ phương trình có nghiệm duy nhất (1; -1).

Cách 2:

a) Đặt x + y = u và x – y = v (*)

Khi đó hệ phương trình trở thành

Thay u = -7 và v = 6 vào (*) ta được hệ phương trình:

b) Đặt x – 2 = u và y + 1 = v.

Khi đó hệ phương trình trở thành :

+ u = -1 ⇒ x – 2 = -1 ⇒ x = 1.

+ v = 0 ⇒ y + 1 = 0 ⇒ y = -1.

Vậy hệ phương trình có nghiệm (1; -1).

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số Luyện tập (trang 19-20 sgk Toán 9 Tập 2)

Bài 25 (trang 19 SGK Toán 9 tập 2): Ta biết rằng: Một đa thức bằng đa thức 0 khi và chỉ khi tất cả các hệ số của nó bằng 0. Hãy tìm các giá trị của m và n để đa thức sau (với biến số x) bằng đa thức 0:

P(x) = (3m – 5n + 1)x + (4m – n -10)

Lời giải

Đa thức P(x) bằng đa thức 0

Vậy với m = 3 vào n = 2 thì đa thức P(x) bằng đa thức 0.

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số Luyện tập (trang 19-20 sgk Toán 9 Tập 2)

Bài 25 (trang 19 SGK Toán 9 tập 2): Ta biết rằng: Một đa thức bằng đa thức 0 khi và chỉ khi tất cả các hệ số của nó bằng 0. Hãy tìm các giá trị của m và n để đa thức sau (với biến số x) bằng đa thức 0:

P(x) = (3m – 5n + 1)x + (4m – n -10)

Lời giải

Đa thức P(x) bằng đa thức 0

Vậy với m = 3 vào n = 2 thì đa thức P(x) bằng đa thức 0.

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số Luyện tập (trang 19-20 sgk Toán 9 Tập 2)

Bài 26 (trang 19 SGK Toán 9 tập 2): Xác định a và b để đồ thị của hàm số y = ax + b đi qua hai điểm A và B trong mỗi trường hợp sau:

a) A(2; -2) và B(-1; 3) ; b) A(-4; -2) và B(2; 1)

c) A(3; -1) và B(-3; 2) ; d) A(√3; 2) và B(0; 2)

Lời giải

a) Đồ thị hàm số y = ax + b đi qua A(2; -2) ⇔ 2.a + b = -2 (1)

Đồ thị hàm số y = ax + b đi qua B(-1 ; 3) ⇔ a.(-1) + b = 3 (2)

Từ (1) và (2) ta có hệ phương trình :

b) Đồ thị hàm số y = ax + b đi qua A(-4; -2) ⇔ a.(-4) + b = -2

Đồ thị hàm số y = ax + b đi qua B(2 ; 1) ⇔ a.2 + b = 1

Ta có hệ phương trình :

c) Đồ thị hàm số y = ax + b đi qua A(3 ; -1) ⇔ a.3 + b = -1

Đồ thị hàm số y = ax + b đi qua B(-3 ; 2) ⇔ a.(-3) + b = 2.

Ta có hệ phương trình :

d) Đồ thị hàm số y = ax + b đi qua A(√3 ; 2) ⇔ a.√3 + b = 2 (*)

Đồ thị hàm số y = ax + b đi qua B(0; 2) ⇔ a.0 + b = 2 ⇔ b = 2.

Thay b = 2 vào (*) ta được a.√3 + 2 = 2 ⇔ a.√3 = 0 ⇔ a = 0.

Vậy a = 0 và b = 2.

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số Luyện tập (trang 19-20 sgk Toán 9 Tập 2)

Bài 27 (trang 20 SGK Toán 9 tập 2): Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhất hai ẩn rồi giải:

Kiến thức áp dụng