Cách Giải Bài Tập Tìm Giới Hạn Hàm Số / Top 5 # Xem Nhiều Nhất & Mới Nhất 3/2023 # Top View | Englishhouse.edu.vn

Tìm Giới Hạn Hàm Số Dạng 0 Nhân Vô Cùng

Tìm giới hạn hàm số dạng 0 nhân vô cùng

A. Phương pháp giải & Ví dụ

Bài toán: Tính giới hạn

Ta có thể biến đổi về dạng 0/0 hoặc ∞/∞ rồi dùng các phương pháp tính giới hạn của hai dạng kia để làm.

Tuy nhiên, trong nhiều bài tập ta chỉ cần biến đổi đơn giản như đưa biểu thức vào trong (hoặc ra ngoài) dấu căn, quy đồng mẫu thức …. Là có thể đưa về dạng quen thuộc.

Ví dụ minh họa

Bài 1: Tính giới hạn:

Hướng dẫn:

Ta có:

Bài 2: Tính giới hạn:

Hướng dẫn:

Ta có:

Bài 3: Tính giới hạn:

Hướng dẫn:

Bài 4: Tính giới hạn:

Hướng dẫn:

Bài 5: Tính giới hạn:

Hướng dẫn:

Bài 6: Tính giới hạn:

Hướng dẫn:

(chia cả tử và mẫu cho x 3)

Bài 7: Tính giới hạn:

Hướng dẫn:

B. Bài tập vận dụng

Bài 1: bằng:

A. √5 B. 0 C. 5/2 D. +∞

Bài 2: Chọn kết quả đúng trong các kết quả sau của là:

A. Không tồn tại B. 0 C. 1 D. +∞

Bài 3: Cho hàm số . Giá trị đúng của là:

A. -∞

B. 0

C. √6

D. +∞

Bài 4: Giới hạn bằng:

A. 0 B.-1 C.1 D. -∞

Bài 5: Giới hạn bằng:

A. +∞ B. -∞ C.0 D.1

Bài 6: Giới hạn bằng:

A. -√2/2 B. √10/5 C. -√5/5 D. √2

Bài 7: Giới hạn bằng:

A. 0 B. 1 C. +∞ D. không tồn tại

Bài 8: Giới hạn bằng:

A. 1 B. 0 C. -∞ D. không tồn tại

Bài 9: Cho a là một số thực dương. Tính giới hạn

A. (-1/a 2) B. +∞ C. -∞ D. không tồn tại

Bài 10: Tính giới hạn

A. 2 B.0 C. 0.5 D. 0.25

Hiển thị đáp án

Đáp án: C

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k4: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Các Quy Tắc Tính Giới Hạn Hàm Số

Các quy tắc tính giới hạn hàm số

1. Quy tắc giới hạn của tích (f(x).g(x))

+ Nếu (mathop {lim }limits_{x to {x_0}} fleft( x right) = pm infty ) và (mathop {lim }limits_{x to {x_0}} gleft( x right) = L ne 0) thì (mathop {lim }limits_{x to {x_0}} left[ {fleft( x right).gleft( x right)} right]) được cho trong bảng sau:

3.1.Dạng $frac{0}{0}$ đối với giới hạn tại một điểm

Ví dụ 1: Tính: $mathop {lim }limits_{x to 4} frac{{{x^2} – 16}}{{x – 4}}$

Giải

Bước 1: Ta thế 4 vào phương trình f(x) thì sẽ được dạng  nên khẳng định đây là dạng $frac{0}{0}$.

Bước 2: Biến đổi: $mathop {lim }limits_{x to 4} frac{{{x^2} – 16}}{{x – 4}}$ $ = mathop {lim }limits_{x to 4} frac{{left( {x – 4} right)left( {x + 4} right)}}{{x – 4}}$ $ = mathop {lim }limits_{x to 4} left( {x + 4} right) = 8$

Ví dụ 2.

Tính $mathop {lim }limits_{x to 0} frac{{sqrt {{x^2} + 1} – 1}}{{{x^2}}}$

Giải

Bước 1: Ta thế 0 vào biểu thức dưới dấu lim thì sẽ thấy dạng  $frac{0}{0}$  nên khẳng định đây là dạng  $frac{0}{0}$.

Bước 2: Lúc này ta biến đổi nó bằng cách nhân lượng liên hợp cho cả tử và mẫu:

$mathop {lim }limits_{x to 0} frac{{sqrt {{x^2} + 1} – 1}}{{{x^2}}}$ $ = lim frac{{left( {sqrt {{x^2} + 1} – 1} right)left( {sqrt {{x^2} + 1} + 1} right)}}{{{x^2}left( {sqrt {{x^2} + 1} + 1} right)}}$ $mathop { = lim }limits_{x to 0} frac{{{x^2}}}{{{x^2}left( {sqrt {{x^2} + 1} + 1} right)}}$

Đến đây, chia cả tử và mẫu cho x2 ta được: $ = mathop {lim }limits_{x to 0} frac{1}{{sqrt {{x^2} + 1} + 1}} = frac{1}{2}$

3.2.Dạng $frac{infty }{infty }$

 Phương pháp: Ta chia cho x với số mũ lớn nhất của tử và mẫu.

Ví dụ 1.

Tính giới hạn sau: $mathop {lim }limits_{x to + infty } frac{{4{x^2} – x – 1}}{{3 + 2{x^2}}}$.

Giải

Thay $ + infty $ và biểu thức ta thấy có dạng $frac{{ + infty }}{{ + infty }}$.

Lại có bậc của x lớn nhất bằng 2, ta chia cả tử và mẫu cho x2.

$mathop {lim }limits_{x to + infty } frac{{4{x^2} – x – 1}}{{3 + 2{x^2}}} = mathop {lim }limits_{x to + infty } frac{{4 – frac{1}{x} – frac{1}{{{x^2}}}}}{{frac{3}{{{x^2}}} + 2}} = frac{4}{2} = 2$

3.3. Dạng ${ + infty + infty }$

Ví dụ

Tính các giới hạn sau: $mathop {lim }limits_{x to – infty } frac{{sqrt {4{x^2} – x – 1} – x}}{{x – 1}}$

Giải

Lưu ý: Học sinh rất dễ nhầm dạng ${ + infty + infty }$ và dạng ${ + infty – infty }$.

3.4. Dạng ${ + infty – infty }$

Ví dụ

Tính gới hạn sau:$mathop {lim }limits_{x to + infty } left( {sqrt {{x^2} – x} – sqrt {{x^2} + 1} } right)$.

Giải

Bước 1: Nhân với biểu thức liên hợp của biểu thức sau dấu lim.

Bước 2: Sau liên hợp, có dạng $frac{infty }{infty }$, nên ta chia cả tử và mẫu cho x.

$mathop {lim }limits_{x to + infty } left( {sqrt {{x^2} – x} – sqrt {{x^2} + 1} } right)$

$ = mathop {lim }limits_{x to + infty } frac{{left( {sqrt {{x^2} – x} – sqrt {{x^2} + 1} } right)left( {sqrt {{x^2} – x} + sqrt {{x^2} + 1} } right)}}{{left( {sqrt {{x^2} – x} + sqrt {{x^2} + 1} } right)}}$

$ = mathop {lim }limits_{x to + infty } frac{{ – x – 1}}{{left( {sqrt {{x^2} – x} + sqrt {{x^2} + 1} } right)}}$

$ = mathop {lim }limits_{x to + infty } frac{{ – 1 – frac{1}{x}}}{{left( {sqrt {1 – frac{1}{x}} + sqrt {1 + frac{1}{{{x^2}}}} } right)}} = – frac{1}{2}$

3.5. Dạng ${0.infty }$

Ví dụ

Tính giới hạn sau:$mathop {lim }limits_{x to {3^ + }} left( {x – 3} right)sqrt {frac{x}{{{x^2} – 9}}} $

Giải

$mathop {lim }limits_{x to {3^ + }} left( {x – 3} right)sqrt {frac{x}{{{x^2} – 9}}} $

$ = mathop {lim }limits_{x to {3^ + }} left( {x – 3} right)frac{{sqrt x }}{{sqrt {{x^2} – 9} }}$

$ = mathop {lim }limits_{x to {3^ + }} left( {x – 3} right)frac{{sqrt x }}{{sqrt {x – 3} .sqrt {x + 3} }}$

$ = mathop {lim }limits_{x to {3^ + }} frac{{sqrt {x – 3} sqrt x }}{{sqrt {x + 3} }} = 0$

Các phương pháp tính giới hạn dãy số.

Các phương pháp tính gới hạn hàm số.

Tìm Giới Hạn Hàm Số Dạng Vô Cùng Trừ Vô Cùng, Vô Cùng Trên Vô Cùng

Tìm giới hạn hàm số dạng vô cùng trừ vô cùng, vô cùng trên vô cùng

A. Phương pháp giải & Ví dụ

Những dạng vô định này ta tìm cách biến đổi đưa về dạng ∞/∞

Ví dụ minh họa

Bài 1: Tìm các giới hạn sau:

Hướng dẫn:

Ta có:

Bài 2:

Hướng dẫn:

Bài 3:

Hướng dẫn:

Bài 4:

Hướng dẫn:

Bài 5:

Hướng dẫn:

Bài 6:

Hướng dẫn:

B. Bài tập vận dụng

Bài 1: bằng:

A. +∞ B. 4 C. 0 D. -∞

Bài 2: bằng:

A. 2/3 B. 1/2 C. -2/3 D. -1/2

Bài 3: bằng:

A. -∞ B. 3/5 C. -2/5 D. 0

Bài 4: bằng:

A. 0 B. -1/6 C. -1/2 D. -∞

Bài 5: bằng:

A. -∞ B. 2 C. 4/3 D. -4/3

Bài 6: bằng:

A. +∞ B. 2/5 C. -7 D. -∞

Bài 7: bằng:

A. 2/3 B. 1/2 C. -2/3 D. -1/2

Bài 8: bằng:

A. √5 B. 8 C. 5/2 D. +∞

Bài 9: bằng:

A. +∞ B. 1/3 C. 2/3 D. -2/3

Bài 10: bằng:

A. +∞ B. 4 C. 0 D. -∞

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k4: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Bí Kíp Casio Để Tính Giới Hạn Của Dãy Số Và Hàm Số

www.facebook.com/mathsnqdieu GV: Cao Thành Thái 1 BÍ KÍP CASIO ĐỂ TÍNH GIỚI HẠN CỦA DÃY SỐ VÀ HÀM SỐ PHẦN I. TÍNH GIỚI HẠN CỦA DÃY SỐ Giới hạn của dãy số ( ) n u khi n → +∞ ký hiệu là lim n u . Do n → +∞ (một số vô cùng lớn) nên khi dùng MTCT để tính giới hạn bằng chức năng CALC ta sẽ gán cho biến một giá trị lớn tùy ý (thường là 100; 1000000;......). Cụ thể như sau: 1. Đối với hàm lũy thừa (chứa n ở mũ) Cách thức tính: - Bước 1: nhập hàm số (thay biến n bởi biến x). - Bước 2: bấm nút r màn hình máy tính xuất hiện Ta nhập giá trị = 100x , sau đó bấm nút =. Ví dụ: Tính giới hạn 13 4.5 lim 6 2 3.5 n n n n ++ + − . Ta thực hiện bấm máy như sau: - Bước 1: a3^Q)$+4O5^Q)+1R6+2^Q)$p3O5 ^Q) Ta được màn hình 1. - Bước 2: bấm r nhập 100 = ta được kết quả hình 2. Giá trị 20 3 − là giới hạn cần tìm. 2. Đối với hàm không phải là hàm lũy thừa Cách thức tính: - Bước 1: nhập hàm số (thay biến n bởi biến x). - Bước 2: bấm nút r màn hình máy tính xuất hiện Ta nhập giá trị = 1000000x , sau đó bấm nút =. Ví dụ: Tính giới hạn 2 2 3 4 lim 5 4 n n n n + + + + . Ta thực hiện bấm máy như sau: - Bước 1: aQ)d+3Q)+4R5Q)d+Q)+4. Ta được màn hình 1: - Bước 2: bấm r nhập 1000000 (có thể 1000000000) = ta được kết quả hình 2. Giá trị gần đúng 10,2 5 = là giới hạn cần tìm. PHẦN II. TÍNH GIỚI HẠN CỦA HÀM SỐ 1. Giới hạn của hàm số khi → +∞x . Cách thức tính: - Bước 1: nhập hàm số. - Bước 2: bấm nút r màn hình máy tính xuất hiện Ta nhập giá trị = 1000000x , sau đó bấm nút =. Ví dụ: Tính giới hạn 24 3 1 lim 5 2x x x x→+∞ + + + . Ta thực hiện bấm máy như sau: - Bước 1: as4Q)d+3Q)+1R5Q)+2 www.facebook.com/mathsnqdieu GV: Cao Thành Thái 2 Ta được màn hình 1. - Bước 2: bấm r nhập 1000000 (có thể 1000000000) = ta được kết quả hình 2. Giá trị gần đúng 20,4 5 = là giới hạn cần tìm. 2. Giới hạn của hàm số khi → −∞x . Cách thức tính: - Bước 1: nhập hàm số. - Bước 2: bấm nút r màn hình máy tính xuất hiện Ta nhập giá trị = −1000000x , sau đó bấm nút =. Ví dụ: Tính giới hạn 23 4 3 1 lim 5 2x x x x x→−∞ − + + + . Ta thực hiện bấm máy như sau: - Bước 1: a3Q)ps4Q)d+3Q)+1R5Q)+2 Ta được màn hình 1. - Bước 2: bấm r nhập -1000000 (có thể -1000000000) = ta được kết quả hình 2. Giá trị gần đúng 1, 0 là giới hạn cần tìm. 3. Giới hạn của hàm số khi → 0 x x . Phương pháp 1 Cách thức tính: - Bước 1: nhập hàm số. - Bước 2: bấm nút r màn hình máy tính xuất hiện Ta nhập giá trị ,= 0 0001x x (hoặc ,= 0 0001nx x nếu → 0 n x x sau đó bấm nút =. Ví dụ: Tính giới hạn 2 22 2 12 lim 4x x x x→− + + − . Ta thực hiện bấm máy như sau: - Bước 1: a2Q)+sQ)d+12RQ)dp4. Ta được màn hình 1. - Bước 2: bấm r nhập ,−2 0001 (có thể ,−2 0000001 ) = ta được kết quả hình 2. Giá trị gần đúng 30,375 8 − =− là giới hạn cần tìm. Phương pháp 2: dùng đạo hàm để tính (qy) Ta dùng định nghĩa đạo hàm 0 0 0 0 ( ) ( ) ( ) lim x x f x f x f x x x→ − ′ = − . Dạng 1: 0 0 ( ) lim x x g x A x x→ = − biết 0 ( ) 0g x = . Ta viết 0 ( ) ( ) ( )g x f x f x= − . Khi đó nếu ( )f x có đạo hàm tại 0 x thì 0 0 0 0 ( ) ( ) lim ( ) x x f x f x A f x x x→ − ′= = − . Dạng 2: 0 ( ) lim ( )x x F x B G x→ = biết 0 0 ( ) ( ) 0F x G x= = . www.facebook.com/mathsnqdieu GV: Cao Thành Thái 3 Ta viết 0 ( ) ( ) ( )F x f x f x= − và 0 ( ) ( ) ( )G x g x g x= − . Khi đó nếu ( )f x , ( )g x có đạo hàm tại 0 x và 0 ( ) 0g x′ ≠ thì 0 0 0 0 0 0 0 ( ) ( ) ( ) lim ( ) ( ) ( )x x f x f x x x f x B g x g x g x x x → − ′− = = ′− − . (Phương pháp L’Hopital). Lưu ý: Phương pháp này áp dụng cho giới hạn hữu hạn dạng 0 0 . Ví dụ: Tính giới hạn 2 2 3 2 lim 2x x x x→− + + + . Ta thực hiện bấm máy như sau: aqyQ)d+3Q)+2$p2 $$qyQ)+2$z2 được mành hình 1. Nhập xong ta bấm = được màn hình 2. Kết quả bài này bằng 1− . Ví dụ: Tính giới hạn 2 21 2 1 2 6 lim 1x x x x x→ + − + + − . Ta thực hiện bấm máy như sau: aqy2Q)+1psQ)d+2Q)+6$$1$$qy Q)dp1$1 được màn hình 1. Nhập xong ta bấm = được màn hình 2. Kết quả bài này là giá trị gần bằng ( ) 2 0, 6 3 = . 4. Giới hạn phải của hàm số khi +→ 0 x x . Cách thức tính: - Bước 1: nhập hàm số. - Bước 2: bấm nút r màn hình máy tính xuất hiện Ta nhập giá trị ,= + 0 0 0001x x (hoặc ,= + 0 0 0001nx x nếu → 0 n x x sau đó bấm nút =. Ví dụ: Tính giới hạn 2 2 2 2 12 lim 4x x x x+→− + + − . Ta thực hiện bấm máy như sau: - Bước 1: a2Q)+sQ)d+12$$Q)dp4 Ta được màn hình 1. - Bước 2: bấm r nhập ,− +2 0 0001 = ta được kết quả hình 2. Giá trị gần đúng 30,375 8 − =− là giới hạn cần tìm. 5. Giới hạn phải của hàm số khi −→ 0 x x . Cách thức tính: - Bước 1: nhập hàm số. - Bước 2: bấm nút r màn hình máy tính xuất hiện Ta nhập giá trị ,= − 0 0 0001x x (hoặc ,= − 0 0 0001nx x nếu → 0 n x x sau đó bấm nút =. www.facebook.com/mathsnqdieu GV: Cao Thành Thái 4 Ví dụ: Tính giới hạn 2 2 2 2 12 lim 4x x x x−→ − + − . Ta thực hiện bấm máy như sau: - Bước 1: a2Q)psQ)d+12$$Q)dp4 Ta được màn hình 1. - Bước 2: bấm r nhập ,−2 0 0001 = ta được kết quả hình 2. Giá trị gần đúng 30,375 8 = là giới hạn cần tìm. PHẦN III. CHỨNG MINH PHƯƠNG TRÌNH CÓ NGHIỆM Bài 1. Chứng minh phương trình 32 6 1 0x x− + = có ít nhất hai nghiệm. Cách bấm máy tính CASIO 570VN PLUS w72Q)qdp6Q)+1==z2=2== Ta được kết quả hiển thị như sau: Giải Xét hàm số 3( ) 2 6 1f x x x= − + . Hàm số 3( ) 2 6 1f x x x= − + liên tục trên đoạn 2;0 −   . Ta có ( 2) 3f − = − và (0) 1f = . Do đó ( 2). (0) 0f f− < . Vậy phương trình ( ) 0f x = có ít nhất một nghiệm trên khoảng ( 2;0)− (1). Hàm số 3( ) 2 6 1f x x x= − + liên tục trên đoạn 0;1    . Ta có (0) 1f = và (1) 3f = − . Do đó (0). (1) 0f f < . Vậy phương trình ( ) 0f x = có ít nhất một nghiệm trên khoảng (0;1) (2). Từ (1) và (2) suy ra phương trình đã cho có ít nhất hai nghiệm. Bài 2. Chứng minh rằng phương trình 5 3 3 0x x− + = luôn có nghiệm. Hướng dẫn: Để chứng minh phương trình luôn có nghiệm ta chỉ cần chứng minh phương trình có ít nhất một nghiệm trên một khoảng nào đó ta đã chọn. Ta sử dụng MTCT để tìm một khoảng phù hợp đó như sau: Cách bấm máy tính CASIO 570VN PLUS (sử dụng TABLE) w7Q)^5$p3Q)+3==z2=2==RR Ta được kết quả hiển thị như sau: Giải Xét hàm số 5( ) 3 3f x x x= − + . Hàm số 5( ) 3 3f x x x= − + liên tục trên đoạn 2; 1 − −   . www.facebook.com/mathsnqdieu GV: Cao Thành Thái 5 Ta có ( 2) 23f − = − và ( 1) 5f − = . Do đó ( 2). ( 1) 23.5 115 0f f− − = − = − < . Vậy phương trình ( ) 0f x = có ít nhất một nghiệm trên khoảng ( 2; 1)− − . Hay phương trình đã cho luôn có nghiệm. Bài 3. Chứng minh phương trình 32 6 1 0x x− + = có đúng ba nghiệm trong khoảng ( 2;2)− . Hướng dẫn: Phương trình bậc 3 có tối đa ba nghiệm. Do đó để chứng minh phương trình có đúng ba nghiệm thì ta chia khoảng ( 2;2)− thành ba khoảng phân biệt, mà trên mỗi khoảng đó phương trình có một nghiệm. Cách bấm máy tính CASIO 570VN PLUS w72Q)qdp6Q)+1==z2=2== Ta được kết quả hiển thị như sau: Giải Xét hàm số 3( ) 2 6 1f x x x= − + . Hàm số 3( ) 2 6 1f x x x= − + liên tục trên đoạn 2;0 −   . Ta có ( 2) 3f − = − và (0) 1f = . Do đó ( 2). (0) 0f f− < . Vậy phương trình ( ) 0f x = có ít nhất một nghiệm trên khoảng ( 2;0)− (1). Hàm số 3( ) 2 6 1f x x x= − + liên tục trên đoạn 0;1    . Ta có (0) 1f = và (1) 3f = − . Do đó (0). (1) 0f f < . Vậy phương trình ( ) 0f x = có ít nhất một nghiệm trên khoảng (0;1) (2). Hàm số 3( ) 2 6 1f x x x= − + liên tục trên đoạn 1;2    . Ta có (1) 3f =− và (2) 5f = . Do đó (1). (2) 0f f < . Vậy phương trình ( ) 0f x = có ít nhất một nghiệm trên khoảng (1;2) (3). Từ (1), (2) và (3) suy ra phương trình đã cho có đúng ba nghiệm trên khoảng ( 2;2)− . Bài 4. Chứng minh phương trình 4 cos 3x x− = có ít nhất một nghiệm. Hướng dẫn: Chuyển về cùng vế trái 4 cos 3 0x x− − = rồi tiến hành dùng MTCT tìm khoảng chứa nghiệm. Thường chọn các giá trị cung góc lượng giác đặc biệt như: , , , , 6 4 3 2 π π π π Lưu ý: do phương trình có chứa hàm số lượng giác nên trước khi bấm máy tính phải chuyển đơn vị đo là radian. qw4 Cách bấm máy tính CASIO 570VN PLUS w74kQ))p3pQ)==zqKa4=qKa2=qKa4 = Ta được kết quả hiển thị như sau: Giải www.facebook.com/mathsnqdieu GV: Cao Thành Thái 6 4 cos 3 4 cos 3 0x x x x− = ⇔ − − = . Xét hàm số ( ) 4 cos 3f x x x= − − . Hàm số ( ) 4 cos 3f x x x= − − liên tục trên đoạn 0; 2 π         . Ta có (0) 1f = và 3 2 2 f π π    = − −    . Do đó (0). 0 2 f f π    <    . Vậy phương trình ( ) 0f x = có ít nhất một nghiệm trên khoảng 0; 2 π       . Bài 5. Chứng minh rằng phương trình 4 2014 2015 0x x− + − = có ít nhất một nghiệm nhỏ hơn 2. Hướng dẫn: Phương trình có ít nhất một nghiệm nhỏ hơn 2. Do đó ta chọn một khoảng từ 2 trở xuống, chẳng hạn ( 3; 1)− − , ( 2;0)− , (1;2) Giải Xét hàm số 4( ) 2014 2015f x x x= − + − . Hàm số 4( ) 2014 2015f x x x= − + − liên tục trên đoạn 0;2    . Ta có (0) 2015f =− và (2) 1997f = . Do đó (0). (2) 0f f < . Vậy phương trình ( ) 0f x = có ít nhất một nghiệm trên khoảng ( )0;2 .