Xu Hướng 9/2023 # Bài Toán Thực Tế Về Cấp Số Nhân Cực Hay Có Lời Giải # Top 11 Xem Nhiều | Englishhouse.edu.vn

Xu Hướng 9/2023 # Bài Toán Thực Tế Về Cấp Số Nhân Cực Hay Có Lời Giải # Top 11 Xem Nhiều

Bạn đang xem bài viết Bài Toán Thực Tế Về Cấp Số Nhân Cực Hay Có Lời Giải được cập nhật mới nhất tháng 9 năm 2023 trên website Englishhouse.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

Bài toán thực tế về cấp số nhân cực hay có lời giải A. Ví dụ minh họa

Ví dụ 1: Chu kì bán rã của nguyên tố phóng xạ poloni 210 là 138 ngày (nghĩa là sau 138 ngày khối lượng của nguyên tố đó chỉ còn một nửa). Tính (chính xác đến hàng phần trăm) khối lượng còn lại của 20 gam poloni 210 sau 7314 ngày (khoảng 20 năm).

Hướng dẫn giải:

Kí hiệu u n (gam) là khối lượng còn lại của 20 gam poloni 210 sau n chu kì án rã.

Ta có 7314 ngày gồm 53 chu kì bán rã. Theo đề bài ra, ta cần tính u 53.

Từ giả thiết suy ra dãy (u n) là một cấp số nhân với số hạng đầu là và công bội q=0,5.

Do đó .

Chọn A.

Ví dụ 2: Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt trên của mỗi tầng bằng nữa diện tích của mặt trên của tầng ngay bên dưới và diện tích mặt trên của tầng 1 bằng nửa diện tích của đế tháp (có diện tích là 12288 m 2). Tính diện tích mặt trên cùng.

Hướng dẫn giải:

Diện tích bề mặt của mỗi tầng (kể từ tầng 1) lập thành một cấp số nhân có công bội và

Khi đó diện tích mặt trên cùng là

Chọn A.

Ví dụ 3: Một du khách vào trường đua ngựa đặt cược, lần đầu đặt 20000 đồng, mỗi lần sau tiền đặt gấp đôi lần tiền đặt cọc trước. Người đó thua 9 lần liên tiếp và thắng ở lần thứ 10 Hỏi du khác trên thắng hay thua bao nhiêu?

Hướng dẫn giải:

Số tiền du khác đặt trong mỗi lần (kể từ lần đầu) là một cấp số nhân có U 1 = 20000 và công bội q = 2.

Du khách thua trong 9 lần đầu tiên nên tổng số tiền thua là:

Số tiền mà du khách thắng trong lần thứ 10 là

Ta có nên du khách thắng 20 000.

Chọn C.

Ví dụ 4: Một người bắt đầu đi làm được nhận được số tiền lương là 7000000đ một tháng. Sau 36 tháng người đó được tăng lương 7%. Hằng tháng người đó tiết kiệm 20% lương để gửi vào ngân hàng với lãi suất 0,3%/tháng theo hình thức lãi kép( nghĩa là lãi của tháng này được nhập vào vốn của tháng kế tiếp). Biết rằng người đó nhận lương vào đầu tháng và số tiền tiết kiệm được chuyển ngay vào ngân hàng.

Hỏi sau 36 tháng tổng số tiền người đó tiết kiệm được ( cả vốn lẫn lãi) là bao nhiêu? (làm tròn đến hàng nghìn)

Hướng dẫn giải:

Hết tháng thứ nhất, người đó có tổng số tiền tiết kiệm là .

Hết tháng thứ hai, người đó có tổng số tiền tiết kiệm là

Hết tháng thứ 36, người đó có tổng số tiền tiết kiệm là

Thay số ta được

Chọn C

Ví dụ 5: Tục truyền rằng nhà vua Ấn Độ cho phép người phát minh ra bàn cờ vua được lựa chọn phần thưởng tùy theo sở thích. Người đó xin nhà vua: ”Bàn cờ có 64 ô, với ô thứ nhất thần xin nhận 1 hạt,ô thứ 2 thì gấp đôi ô đầu, ô thứ 3 thì lại gấp đôi ô thứ hai,… cứ như vậy ô sau nhận số hạt thóc gấp đôi phần thưởng dành cho ô liền trước và thần xin nhận tổng số các hạt thóc ở 64 ô”. Hỏi người đó sẽ nhận được một phần thưởng tương ứng nặng bao nhiêu? (Giả sử 100 hạt thóc nặng 20 gam).

Hướng dẫn giải:

Tổng số hạt thóc phần thưởng là tổng 64 số hạng đầu tiên một cấp số nhân với u 1 = 1, q = 2.

Suy ra:

Quy đổi: 100 hạt thóc nặng 20 gam suy ra 50.000.000 hạt nặng 1 tấn.

Suy ra 2 64 − 1 hạt thóc nặng .

Chọn B.

Ví dụ 6: Tìm hiểu tiền công khoan giếng ở hai cơ sở khoan giếng, người ta được biết:

– Ở cơ sở A: Giá của mét khoan đầu tiên là 50.000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 10000 đồng so với giá của mét khoan ngay trước.

– Ở cơ sở B: Giá của mét khoan đầu tiên là 50.000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 8% giá của mét khoan ngay trước.

Một người muốn chọn một trong hai cơ sở nói trên để thuê khoan một cái giếng sâu 20 mét, một cái giếng sâu 30 mét ở hai địa điểm khác nhau. Hỏi người ấy nên chọn cơ sở khoan giếng nào cho từng giếng để chi phí khoan hai giếng là ít nhất. Biết chất lượng và thời gian khoan giếng của hai cơ sở là như nhau.

Hướng dẫn giải:

Kí hiệu A n, B n lần lượt là số tiền công ( đơn vị đồng) cần trả theo cách tính giá của cơ sở A và cơ sở B.

Theo giả thiết ta có:

+ A n là tổng n số hạng đầu tiên của cấp số cộng với số hạng đầu u 1 = 50000 và công sai d = 10000.

B n là tổng n số hạng đầu tiên của cấp số nhân với số hạng đầu v 1 = 50000 và công bội q = 1,08. Do đó

Suy ra nên chọn cơ sở B khoan giếng 20 mét.

Suy ra nên chọn cơ sở A để khoan giếng 30 mét.

Chọn D.

B. Bài tập trắc nghiệm

Câu 1: Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt trên của mỗi tầng bằng nữa diện tích của mặt trên của tầng ngay bên dưới và diện tích mặt trên của tầng 1 bằng nửa diện tích của đế tháp (có diện tích là 12288m 2). Tính diện tích mặt trên cùng

Hiển thị đáp án

Đáp án: A

Diện tích bề mặt của mỗi tầng (kể từ 1) lập thành một cấp số nhân có công bội

Câu 2: Một của hàng kinh doanh, ban đầu bán mặt hàng A với giá 100 (đơn vị nghìn đồng). Sau đó, cửa hàng tăng giá mặt hàng A lên 10% Nhưng sau một thời gian, cửa hàng lại tiếp tục tăng giá mặt hàng đó lên 10% Hỏi giá của mặt hàng A của cửa hàng sau hai làn tăng giá là bao nhiêu?

Hiển thị đáp án

Đáp án: B

Câu 3: Một người đem 100 triệu đồng đi gửi tiết kiệm với kỳ han 6 tháng, mỗi tháng lãi suất là 0,7% số tiền mà người đó có. Hỏi sau khi hết kỳ hạn, người đó được lĩnh về bao nhiêu tiền?

Hiển thị đáp án

Đáp án: D

Đặt r = 0,7% = 0,007

Số tiền sau tháng thứ nhất là

Số tiền sau tháng thứ hai là

Lập luận tương tự, ta có số tiền sau tháng thứ sáu là

Do đó

Câu 4: Tỷ lệ tăng dân số của tỉnh M là 1,2% Biết rằng số dân của tỉnh M hiện nay là 2 triệu người. Nếu lấy kết quả chính xác đến hàng nghìn thì sau 9 năm nữa số dân của tỉnh M sẽ là bao nhiêu?

Hiển thị đáp án

Đáp án: C

Ta có: .

Câu 5: Tế bào E. Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại nhân đôi một lần. Nếu lúc đầu có 10 12 tế bào thì sau 3 giờ sẽ phân chia thành bao nhiêu tế bào?

Hiển thị đáp án

Đáp án: C

Vậy, số tế bào nhận được sau 3 giờ là .

Câu 6: Ta biết rằng trong một hồ sen; số lá sen ngày hôm sau bằng 3 lần số lá sen ngày hôm trước. Biết rằng ngày đầu có 1 lá sen thì tới ngày thứ 10 hồ sẽ đầy lá sen. Hỏi nếu ngày đầu có 9 lá sen thì tới ngày thứ mấy hồ sẽ đầy lá sen?

Hiển thị đáp án

Đáp án: C

Số hạng thứ n là .

Câu 7: Cho n đường tròn đồng tâm O. Biết rằng r 1 =2; chu vi đường tròn (O; r 2) có gấp 2 lần chu vi đường tròn (O; r 1);…; chu vi đường tròn (O; r n) gấp 2 lần chu vi đường tròn (O;r n-1).Chu vi đường tròn (O; r n) gấp 256 lần chu vi đường tròn (O; r 1). Tính r n-1?

Hiển thị đáp án

Đáp án: A

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k4: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

day-so-cap-so-cong-va-cap-so-nhan.jsp

Phương Pháp Giải Bài Toán Hoán Vị Vòng Quanh Cực Hay Có Lời Giải

Phương pháp giải bài toán Hoán vị vòng quanh cực hay có lời giải A. Phương pháp giải

Định nghĩa: Cho tập hợp X gồm n phần tử. Mỗi cách sắp xếp n phần của X trên một đường tròn gọi là một hoán vị vòng quanh của n phần tử của tập X.

Các cách sắp xếp các phần tử của X trên một đường tròn mà sai khác nhau một phép quay được coi là cùng một hoán vị vòng quanh.

Số các hoán vị vòng quanh của n phần tử khác nhau được tính bởi công thức: Q n=(n-1)!

B. Ví dụ minh họa

Ví dụ 1 : Tổ 1 của lớp 10A1 có 4 học sinh nữ và 6 học sinh nam .Hỏi có bao nhiêu cách xếp các học sinh này vào một bàn tròn.

A.362880 B.128800 C.246800 D.328600

Hướng dẫn giải :

Đáp án : A

Tổ 1 có tất cả 10 học sinh.Mỗi cách xếp 10 học sinh này vào một bàn tròn là một hoán vị vòng quanh của 10 phần tử nên số cách xếp thỏa mãn đề bài là:

9!= 362880 cách xếp.

Ví dụ 2 : Cuối năm học, các học sinh giỏi lớp 11A2 có tổ chức ăn liên hoan. Tổ 1 có 3 học sinh giỏi; tổ 2 có 4 học sinh giỏi; tổ 3 có 2 học sinh giỏi và tổ 4 có 3 học sinh giỏi. Hỏi có bao nhiêu cách xếp các học sinh này vào một bàn tròn?

A.10! B.11! C.12! D.13!

Hướng dẫn giải :

Đáp án : B

Lớp 11A2 có tất cả số học sinh giỏi là: 3+ 4+ 2+ 3= 12 học sinh giỏi

Việc xếp 12 học sinh giỏi này vào một bàn tròn là một hoán vị vòng quanh của 12 phần tử nên số cách xếp thỏa mãn là: 11! cách xếp.

Ví dụ 3 : Tổ 4 của lớp 12A3 có 4 học sinh nữ và 5 học sinh nam . Hỏi có bao nhiêu cách xếp các học sinh này vào một bàn tròn sao cho nhóm học sinh nữ ngồi với nhau; nhóm học sinh nam ngồi với nhau.

A.1280 B.1660 C.2880 D.1860

Hướng dẫn giải :

Đáp án : C

+ Ta coi 4 học sinh nữ là một nhóm X và 5 học sinh nam là nhóm Y.

+ Số cách xếp hai nhóm X và Y vào bàn tròn là (2-1)!= 1 cách .

+ Số cách xếp 4 học sinh nữ trong nhóm X là 4!.

+ Số cách xếp 5 học sinh nam trong nhóm Y là 5!.

⇒ Có: 1. 4!. 5!= 2880 cách xếp thỏa mãn đầu bài.

Ví dụ 4 : Một hội nghị bàn tròn có ba phái đoàn: 4 người miền bắc, 3 người miền trung và 4 người miền nam. Hỏi có bao nhiêu cách xếp chỗ ngồi cho các thành viên sao cho những người có cùng miền thì ngồi gần nhau.

A.7268 B.6912 C.3286 D.4896

Hướng dẫn giải :

Đáp án : B

+ Ta coi: 4 người miền bắc là một nhóm X; 3 người miền trung là một nhóm Y và 4 người miền nam là một nhóm Z .

+ Số cách xếp ba nhóm X; Y; Z vào bàn tròn là: 2!= 2 cách.

+ Số cách xếp 4 người trong nhóm X là : 4!= 24 cách.

+ Số cách xếp 3 người trong nhóm Y là: 3!= 6 cách.

+ Số cách xếp 4 người trong nhóm Z là: 4! = 24 cách.

⇒ Số cách xếp thỏa mãn đầu bài là : 2. 24.6.24= 6912 cách.

Ví dụ 5 : Một nhóm học sinh có 6 nam và 6 nữ. Hỏi có bao nhiêu cách xếp 12 người này vào bàn tròn sao cho hai bạn cùng giới không ngồi cạnh nhau.

A.86400 B.172800 C.43200 D.Đáp án khác

Hướng dẫn giải :

Đáp án : A

+ Xếp 6 bạn nam vào 1 bàn tròn có : 5! Cách.

+ Khi đó giữa hai bạn nam có 1 vách ngăn. Có 6 vách ngăn. Xếp 6 bạn nữ vào 6 vách ngăn đó có 6! Cách.

Theo quy tắc nhân; số cách xếp thỏa mãn đầu bài là: 5!. 6!= 86400

Ví dụ 6 : Trong một buổi dự tiệc có 5 cặp vợ chồng tham gia. Hỏi có bao nhiêu cách xếp 5 cặp này vào một bàn tròn sao cho hai vợ chồng ngồi cạnh nhau.

A.96 B.192 C.768 D.384

Hướng dẫn giải :

Đáp án : C

+ Coi vợ chồng là 1 bó. Xếp 5 bó vào cái bàn tròn có 4! Cách xếp.

+ Với mỗi bó ta có thể đổi chỗ vị trí vợ; chồng cho nhau.

⇒ Với mỗi cặp vợ chồng có 2!= 2 cách xếp

Theo quy tắc nhân; số cách xếp thỏa mãn là: 4!.2.2.2.2.2= 768 cách.

Ví dụ 7 : Một nhóm văn nghệ gồm 4 bạn nữ và x bạn nam ngồi vào một bàn tròn. Biết rằng có 362880 cách xếp các bạn này vào bàn tròn. Hỏi nhóm văn nghệ này có tất cả bao nhiêu người.

A.6 B.5 C.9 D.10

Hướng dẫn giải :

Đáp án : C

+ Nhóm văn nghệ này có tất cả (4+x) bạn.

+ Số cách xếp (4 + x) bạn này vào bàn tròn là: (4+x)!

Theo đầu bài ta có: (4+x)! = 362880= 9!

⇔ 4 + x= 9 ⇔ x= 5

⇒ Nhóm văn nghệ có 5 bạn nam nên cả nhóm này có 4 + 5= 9 bạn

A.1 B.2 C.3 D.4

Hướng dẫn giải :

Đáp án : B

+ Số cách xếp 4 tổ vào 1 bàn tròn là 3!.

+ Tổ 1 có 3 bạn ngồi liền kề với nhau. Hoán đổi vị trí của 3 bạn này có 3! Cách.

+ tổ 2 có 2 bạn ngồi liền kề với nhau. Hoán đổi vị trí của 2 bạn này có 2! Cách.

+ Tổ 3 có 4 bạn ngồi liền kề với nhau. Hoán đổi vị trí của 4 người này có 4! Cách.

+ Tổ 4 có x bạn ngồi liền kề với nhau. Hoán đổi vị trí của x người này có x! cách.

Theo quy tắc nhân; số cách xếp thỏa mãn là:

3!. 3!.2!. 4!.x!= 10368

⇔ x!= 6 ⇔ x= 2

C. Bài tập trắc nghiệm

Câu 1 : Trong một buổi dự tiệc; có 3 người phụ nữ và 4 người đàn ông cùng ngồi vào một bàn tròn. Hỏi có bao nhiêu cách xếp chỗ ngồi cho những người này?

A.720 B.120 C.5040 D.2080

Câu 2 : Trong một buổi dạ hội; có 4 người đàn ông và 4 phụ nữ cùng ngồi vào một bàn tròn. Hỏi có bao nhiêu cách xếp sao cho nam; nữ ngồi xen kẽ nhau.

A.36 B.144 C.576 D.128

Câu 3 : Có 5 học sinh nam trong đó có bạn Hải và 3 học sinh nữ trong đó có bạn Liên. Hỏi có bao nhiêu cách xếp tám học sinh nói trên ngồi vào một bàn tròn sao cho hai bạn Hải và Liên không ngồi cạnh nhau ? (Hai cách xếp chỉ khác nhau một phép quay được coi là như nhau).

A.1440 B.5040 C.2880 D.3600

Câu 4 : Có 4 nhóm đại sứ quán nước ngoài gồm: 3 người nước Anh; 4 người nước Pháp ; 4người nước Mỹ và 2 người nước Lào. Hỏi có bao nhiêu cách xếp họ vào một bàn tròn sao cho các đại sứ quán của cùng 1 nước ngồi cạnh nhau?

A.41472 B.20736 C.6912 D.Đáp án khác

Câu 5 : Có bao nhiêu cách sắp xếp 6 người (trong đó có một cặp vợ chồng) vào một bàn tròn, sao cho vợ chồng ngồi cạnh nhau?

A.120 B.720 C.48 D.24

Câu 6 : Trong buổi dự tiệc có 10 người trong đó có 1 cặp vợ chồng. Hỏi có bao nhiêu cách xếp 10 người này vào bàn tròn sao cho hai vợ chồng đó không ngồi cạnh nhau.

A.282240 B.146800 C.245200 D.186400

Câu 7 : Một nhóm học sinh có 8 người trong đó có lớp trưởng; bí thư và lớp phó. Hỏi có bao nhiêu cách xếp 8 bạn này vào bàn tròn sao cho 3 bạn cán bộ lớp không ngồi cạnh nhau.

A.6420 B.2860 C.4320 D.5420

Câu 8 : Có bao nhiêu cách xếp 8 bạn nữ và 6 bạn nam vào bàn tròn sao cho các bạn nam không ngồi cạnh nhau .

Hiển thị đáp án

Đáp án : B

+ Khi đó giữa 8 bạn nữ tạo ra 8 vách ngăn. Ta xếp 6 bạn nam vào 8 vách ngăn : có cách.

Theo quy tắc nhân có: 7!. cách xếp.

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k4: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Dạng Bài Tập Về Phép Quay 90 Độ Cực Hay, Có Lời Giải

Dạng bài tập về phép quay 90 độ cực hay, có lời giải A. Phương pháp giải

[1]. Biểu thức tọa độ của phép quay 90° và -90°

Trong hệ trục tọa Oxy:

[2]. Bài toán xác định vị trí của điểm, hình khi thực hiện phép quay cho trước

Bước 1. Xác định tâm quay và góc quay theo yêu cầu bài toán.

Bước 2. Áp dụng các kiến thức sau:

Bước 3. Kết luận.

B. Ví dụ minh họa

Ví dụ 1: Cho tam giác ABC, trọng tâm G ( thứ tự các điểm như hình vẽ)

a) Tìm ảnh của điểm B qua phép quay tâm A góc quay 90°

b) Tìm ảnh của đường thẳng BC qua phép quay tâm A góc quay 90°

c) Tìm ảnh của tam giác ABC qua phép quay tâm G góc quay 90°

Hướng dẫn giải:

a)

Dựng đoạn thẳng AB’ bằng đoạn thẳng AB sao cho (Vị trí B’ như hình vẽ sao để chiều quay dương và có độ lớn góc quay bằng 90°)

* Khi đó:

* Vậy B’ à ảnh của điểm B qua phép quay tâm A, góc quay 90°

b)

* Dựng đoạn thẳng AC’ bằng đoạn thẳng AC sao cho (Vị trí C’ như hình vẽ sao để chiều quay dương và có độ lớn góc quay bằng 90°)

*

Mặt khác, Q(A,90°)(B) = B’ (theo câu a) (2)

* Từ (1) và (2) suy ra: Q(A,90°)(BC) = B’C’

c)

* Dựng đoạn thẳng GA’ bằng đoạn thẳng GA sao cho (Vị trí A’ như hình vẽ sao để chiều quay dương và có độ lớn góc quay bằng 90°)

* Dựng đoạn thẳng GB” bằng đoạn thẳng GB sao cho (Vị trí B” như hình vẽ sao để chiều quay dương và có độ lớn góc quay bằng 90°)

* Dựng đoạn thẳng GC” bằng đoạn thẳng GC sao cho (Vị trí C” như hình vẽ sao để chiều quay dương và có độ lớn góc quay bằng 90°)

* Khi đó:

Từ (1),(2),(3) suy ra: Q(G,90°)(ΔABB) = ΔAB”C”

Ví dụ 2: Cho hình vuông ABCD tâm O ( thứ tự các điểm như hình vẽ)

a) Tìm ảnh của điểm C qua phép quay tâm A, góc quay 90°

b) Tìm ảnh của đường thẳng BC qua phép quay tâm O, góc quay 90°

Hướng dẫn giải:

a) Gọi E là điểm đối xứng của C qua D.

Khi đó:

Vậy E là ảnh của C qua phéo quay tâm A, góc quay 90°

b) Vì ABCD là hình vuông nên

Từ (1) và (2) suy ra: Q(O,90°)(BC) = CD

Vậy CD là ảnh của BC qua phép quay tâm O góc quay 90°

Ví dụ 3: Trong mặt phẳng tọa độ Oxy cho điểm A(-1;5); đường thẳng d: 3x – y + 2 = 0 và đường tròn (C): (x + 4) 2 + (y – 1) 2 = 16

a) Tìm tọa độ điểm B là ảnh của điểm A qua phép quay tâm O(0;0) góc quay -90°.

b) Viết phương trình đường thẳng d’ là ảnh của d qua phép quay tâm O góc quay -90°.

c) Tìm ảnh của đường tròn (C) qua phép quay tâm O, góc quay -90°

Hướng dẫn giải:

a)

Cách 1:

+) Do Q(O,90°)(A) = B nên dựa vào vẽ bên ta suy ra: B(5;1).

Cách 2:

+) Do Q(O,90°)(A) = B nên .

Vậy B(5;1).

b) Qua phép quay tâm O góc quay -90° đường thẳng d biến thành đường thẳng d’ vuông góc với d.

Phương trình đường thẳng d’ có dạng: x + 3y + m = 0.

Lấy A(0;2) ∈ d. Qua phép quay tâm O góc quay -90°, điểm A(0;2) biến thành điểm B(2;0) ∈ d’. Khi đó m = -2.

Vậy phương trình đường d’ là x + 3y – 2 = 0.

c) Từ (C), ta có tâm I(-4; 1) và bán kính R = 4.

Khi đó: Q(O,90°)(I) = I'(1;4) và bán kính R’ = R = 4.

C. Bài tập trắc nghiệm

Câu 1. Cho hình vuông ABCD tâm O, M là trung điểm của AB, N là trung điểm của OA ( thứ tự các điểm A,B,C,D như hình vẽ)

Tìm ảnh của ΔAMN qua phép quay tâm O, góc quay 90°.

A. ΔDM’N’, M’, N’ lần lượt là là trung điểm OC, OB

B. ΔDM’N’, M’, N’ lần lượt là là trung điểm OA, OB

C. ΔAM’N’, M’, N’ lần lượt là là trung điểm OC, OD

D. ΔAM’N’ với M’, N’ lần lượt là là trung điểm BC, OB

Hiển thị đáp án

Lời giải.

Chọn D.

Câu 2. Cho hai hình vuông vuông ABCD và BEFG (như hình vẽ). Tìm ảnh của ΔABG trong phép quay tâm B, góc quay -90°.

A. ΔCBE

B. ΔCBF

C. ΔCBG

D. ΔCBD

Hiển thị đáp án

Lời giải

Chọn A.

Câu 3. Cho hình vuông ABCD có tâm là O,. Gọi M,N,P,Q theo thứ tự là trung điểm các cạnh AD, DC, CB, BA ( xem hình vẽ)

Tìm ảnh của tam giác ODN qua phép quay tâm O góc quay -90°.

A. ΔOCP

B. ΔOCM

C. ΔMCP

D. ΔNCP

Hiển thị đáp án

Lời giải

Chọn A

+) Ta có:

Câu 4. Trong mặt phẳng Oxy, ảnh của điểm M(-6;1) qua phép quay Q(O,90°) là:

A. M(1;6).

B. M(-1;-6).

C. M(-6;-1).

D. M(6;1).

Câu 5. Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm M(2;0) và điểm N(0;2). Phép quay tâm O biến điểm M thành điển N, khi đó góc quay của nó là

A. φ = 30°.

B. φ = 45°.

C. φ = 90°.

D. φ = 270°.

Hiển thị đáp án

Lời giải

Chọn C

+ Q(O;φ)⁡: M(x;y) ↦ N(x’;y’). Khi đó:

Câu 6. Trong mặt phẳng Oxy, cho điểm B(-3;6). Tìm toạ độ điểm E sao cho B là ảnh của E qua phép quay tâm O góc quay(-90°).

A. E(6;3).

B. E(-3;-6).

C. E(-6;-3).

D. E(3;6).

Câu 7. Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng Δ: x + 2y – 6 = 0. Viết phương trình đường thẳng Δ’ là ảnh của đường thẳng Δ qua phép quay tâm O góc 90°?

A. 2x – y + 6 = 0.

B. 2x – y-6 = 0.

C. 2x + y + 6 = 0.

D. 2x + y-6 = 0.

Câu 8. Trong mặt phẳng Oxy, cho đường tròn (C): (x – 2) 2 + y 2 = 8. Viết phương trình đường tròn (C 1) sao cho (C) là ảnh của đường tròn (C 1) qua phép quay tâm O, góc quay 90°.

Hiển thị đáp án

Lời giải

Chọn A

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k4: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

phep-doi-hinh-va-phep-dong-dang-trong-mat-phang.jsp

Hướng Dẫn Giải Các Dạng Toán Dãy Số, Cấp Số Cộng Và Cấp Số Nhân

Hướng dẫn giải các dạng toán dãy số, cấp số cộng và cấp số nhân

Xin chào các em! Và hôm nay, trong bài viết này chúng tôi xin được chia sẻ với các em một bộ tài liệu hướng dẫn giải các dạng toán dãy số, cấp số cộng và cấp số nhân một cách chi tiết và dễ dàng nhất. Đây là bộ tài liệu gồm 90 trang tổng hợp và hướng dãn giải về các dạng toán chuyên đề về dãy số, cấp số cộng và cấp số nhân.

NHẬN NGAY KHÓA HỌC MIỄN PHÍ

Phần 1. Dãy số

A – Lý thuyết

B – Bài tập

Dạng 1. Số hạng của dãy số

Dạng 2. Dãy số đơn điệu, dãy số bị chặn

Phần 2. Cấp số cộng

A – Lý thuyết

B – Bài tập

Dạng 1. Xác định cấp số cộng và các yếu tố của cấp số cộng

Phương pháp: + Dãy số (un) là một cấp số cộng ⇔ un+1 – un = d không phụ thuộc vào n và d là công sai + Để xác định một cấp số cộng, ta cần xác định số hạng đầu và công sai. Do đó, ta thường biểu diễn giả thiết của bài toán qua u1 và d

Dạng 2. Tìm điều kiện để dãy số lập thành cấp số cộng: Ba số a, b, c theo thứ tự đó lập thành cấp số cộng ⇔ a + c = 2b

Phần 3. Cấp số nhân

A – Lý thuyết

B – Bài tập

Dạng 1. Xác định cấp số nhân và các yếu tố của cấp số nhân

Phương pháp: + Dãy số (un) là một cấp số nhân ⇔ un+1/un = q không phụ thuộc vào n và q là công bội + Để xác định một cấp số nhân, ta cần xác định số hạng đầu và công bội. Do đó, ta thường biểu diễn giả thiết của bài toán qua u1 và q

Dạng 2. Tìm điều kiện để dãy số lập thành cấp số nhân: Ba số a, b, c theo thứ tự đó lập thành cấp số nhân ⇔ ac = b^2

5

/

5

(

2

bình chọn

)

Cách Tìm Hệ Số Lớn Nhất Trong Khai Triển Cực Hay Có Lời Giải

Cách tìm hệ số lớn nhất trong khai triển cực hay có lời giải A. Phương pháp giải

Để tìm hệ số lớn nhất trong khai triển ( ax+ by)n ta làm như sau :

+ Bước 1. Tìm số hạng thứ k trong khai triển. Từ đó; suy ra hệ số của số hạng thứ k.

+ Bước 2. Giải bất phương trình: a k ≤ a k+ 1 (1)

Từ (1) và (2) suy ra hệ số lớn nhất trong khai triển

( chú ý 0≤k≤n và k nguyên dương )

Một số công thức thường dùng trong các bài tập dạng này như sau :

Mở rộng được công thức :

B. Ví dụ minh họa

Ví dụ 1:

A.366080 B.244536 C.122480 D.126480

Hướng dẫn giải :

Đáp án : A

Ví dụ 2: Số lớn nhất trong các số

Hướng dẫn giải :

Đáp án : C

Ví dụ 3: Hệ số lớn nhất trong khai triển (x+2) 10 là

A.1260 B.12840 C.15360 D.1200

Hướng dẫn giải :

Đáp án : C

Ví dụ 4: Cho n là số nguyên dương thỏa mãn . Xét khai triển . Hệ số lớn nhất của P(x) là

A.6150146 B.3075072 C.25648 D.129024

Hướng dẫn giải :

Đáp án : B

Ví dụ 5:

A.2 1000 B. 2 1000+ 1 C.1000 D. 2 1000-1

Hướng dẫn giải :

Đáp án : D

Ví dụ 6: Tính tổng :

Hướng dẫn giải :

Đáp án : D

Ví dụ 7: Cho k≤n trong các đẳng thức sau đây đẳng thức nào sai ?

Hướng dẫn giải :

Đáp án : D

A.-1 B.1 C.0 D.2

Hướng dẫn giải :

Đáp án : A

Ta có:

Cho x = 1 thay vào (*) ta được:

Vậy tổng hệ số trong khai triển đã cho là – 1

Ví dụ 9: Cho n nguyên dương thỏa mãn . Số các giá trị của n thỏa mãn là:

A.10 số B.9 số C.8 số D.7 số

Hướng dẫn giải :

Đáp án : A

Ví dụ 10:

Hướng dẫn giải :

Đáp án : B

Ví dụ 11: Giá trị của n thỏa mãn:

A.n = 7 B.n = 6 C.n = 5 D.n = 4

Hướng dẫn giải :

Đáp án : C

Ví dụ 12: Cho phương trình :

Tìm nghiệm của phương trình trên

A.11 B.10 C.13 D.12

Hướng dẫn giải :

Đáp án : D

Hướng dẫn giải :

Ví dụ 13: Giải bất phương trình

A.S = [3;5] B.S = [3;4] C.S = {3;4;5} D.S = {3;4}

Hướng dẫn giải :

Đáp án : D

Điều kiện:x≥3,x∈N.

Ta có bất phương trình

Kết hợp với điều kiện xác định ta có 3≤x≤4

Mà x nguyên dương nên S = {3;4} là tập nghiệm của bất phương trình.

Ví dụ 14: Tìm hệ số của x 10 trong khai triển (1- √3 x) 2n biết n là số nguyên dương thỏa mãn:

Hướng dẫn giải :

Đáp án : B

Ví dụ 15: Tìm số hạng không chứa x trong khai triển:

với x≠0, biết n là số nguyên dương thỏa mãn:

Hướng dẫn giải :

Đáp án : C

Ví dụ 16: Tìm số nguyên dương n thỏa mãn:

A.n = 10 B.n = 9 C.n = 8 D.n = 11

Hướng dẫn giải :

Đáp án : A

C. Bài tập trắc nghiệm

Câu 1: Trong khai triển biểu thức số hạng nguyên có giá trị lớn nhất là

A.1880 B.4536 C.2864 D.1864

Hiển thị đáp án

Đáp án : B

A.126720 B.495 C.256 D.59360

Câu 4:Chon là số nguyên dương thỏa mãn . Tìm hệ số lớn nhất của biểu thức P(x)= (1+ x).(1+ 2x) n sau khi khai triển và rút gọn.

A.5069246 B.58612096 C.48692096 D.50692096

Hiển thị đáp án

Đáp án : D

Câu 5:

Câu 6: Tính tổng :

theo n ta được:

Câu 7:

A.n = 5 B.n = 6 C.n = 7 D.n = 8

Câu 9: Trong các đẳng thức sau đẳng thức nào sai?

Câu 10:

A. Lời giải trên sai từ bước 1.

B. Lời giải trên sai từ bước 2.

C. Lời giải trên sai ở bước 3.

D. Lời giải trên đúng.

A.x = 11 B.x = 10 C.x = 12 D.x = 8

Hiển thị đáp án

Đáp án : A

Câu 12:

A.2023.2 2023 B.2023.2 2023 C.2023.2 2023 D.2023.2 2023

Câu 13:

Câu 14:

A.2451570 B.3848222 C.836418 D.1307527

Câu 15:

A. x= 5

B. x= 11 hoặc x= 5

C.x = 11

D.Đáp án khác

Câu 16:

Tìm hệ số của x 14 trong khai triển ( 1/x+ x 3)(3n+1) với x≠0; biết n là số nưguyên dương thỏa mãn:

A.150 B.180 C.240 D.210

Câu 17: Tìm hệ số chứa x 7 trong khai triển ( 3x 2– 2/x) n với x≠0; biết hệ số của số hạng thứ ba trong khai triển là 1080.

A.90 B.-720 C.630 D.-810

Câu 18:

A.n = 5 B.n = 6 C.n = 7 D. n = 4

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k4: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Cách Giải Bài Tập Xác Suất Nâng Cao, Cực Hay Có Lời Giải

Cách giải bài tập Xác suất nâng cao, cực hay có lời giải A. Ví dụ minh họa

Ví dụ 1: Một người bỏ ngẫu nhiên bốn lá thư vào 4 bì thư đã được ghi địa chỉ. Tính xác suất của biến cố A: ” Có ít nhất một lá thư bỏ đúng phong bì của nó”.

A.5/8 B.3/8 C.1/8 D. 0.24

Hướng dẫn giải :

Đáp án : A

Số cách bỏ 4 lá thư vào 4 bì thư là:

Ta xét các khả năng sau :

+ Có 4 lá thư bỏ đúng địa chỉ:(1;2;3;4) nên có 1 cách bỏ

+ Có 2 là thư bỏ đúng địa chỉ:

+ Số cách bỏ 2 lá thư đúng địa chỉ là:

+ khi đó có 1 cách bỏ hai là thư còn lại

Nên trường hợp này có: = 6 cách bỏ.

Có đúng 1 lá thư bỏ đúng địa chỉ:

Số cách chọn lá thư bỏ đúng địa chỉ: 4 cách

Số cách chọn bỏ ba lá thư còn lại: 2.1=2 cách

Nên trường hợp này có: 4.2=8 cách bỏ.

Do đó: n(A)= 1+ 6+ 8= 15

Vậy P(A)= 15/24= 5/8.

Ví dụ 2: Một thầy giáo có 10 cuốn sách khác nhau trong đó có 4 cuốn sách Toán, 3 cuốn sách Vậy Lí và 3 cuốn sách Hóa Học. Thầy giáo muốn lấy ra 5 cuốn và tặng cho 5 học sinh A: B: C; D; E mỗi em một cuốn. Hỏi thầy giáo có bao nhiêu cách tặng nếu sau khi tặng sách xong, mỗi một trong ba loại sách trên đều còn lại ít nhất một cuốn.

A.5/13 B.4/21 C.17/21 D.409/666

Hướng dẫn giải :

Đáp án : C

+ Không gian mẫu là số cách chọn ngẫu nhiên 5 trong 10 cuốn sách rồi tặng cho 5 học sinh.

Suy ra số phần tử của không gian mẫu là

+ Gọi A là biến cố Sau khi tặng sách thì mỗi một trong ba loại sách của thầy giáo còn lại ít nhất một cuốn .

Để tìm số phần tử của A, ta tìm số phần tử của biến cố A , tức sau khi tặng sách có môn không còn lại cuốn nào.

Vì tổng số sách của hai loại bất kỳ lớn hơn 5 cuốn nên không thể chọn sao cho cùng hết 2 loại sách. Do vậy chỉ có thể một môn hết sách, ta có các khả năng:

Cách tặng sao cho không còn sách Toán, tức là ta tặng 4 cuốn sách toán, 1 cuốn còn lại Lý hoặc Hóa

+ 4 cuốn sách Toán tặng cho 4 người trong 5 người, có cách.

+ 1 người còn lại được tặng 1 cuốn trong 6 cuốn (Lý và Hóa), có .

Suy ra có cách tặng sao cho không còn sách Toán.

Tương tự, có cách tặng sao cho không còn sách Lý.

Tương tự, có cách tặng sao cho không còn sách Hóa.

Vậy xác suất cần tính .

Ví dụ 3: Một hộp chứa 5 viên bi đỏ, 6 viên bi xanh và 7 viên bi trắng. Chọn ngẫu nhiên 6 viên bi từ hộp, tính xác suất để được 6 viên bi có cả ba màu đồng thời hiệu của số bi xanh và bi đỏ, hiệu của số bi trắng và số bi xanh, hiệu của số bi đỏ và số bi trắng theo thứ tự là ba số hạng liên tiếp của một cấp số cộng.

A.5/13 B.4/21 C.17/21 D.40/221

Hướng dẫn giải :

Đáp án : D

Không gian mẫu là số cách chọn ngẫu nhiên 6 viên bi từ hộp chứa 18 viên bi.

Suy ra số phần tử của không gian mẫu là

Gọi A là biến cố 6 viên bi được chọn có cả ba màu đồng thời hiệu của số bi xanh và bi đỏ, hiệu của số bi trắng và số bi xanh, hiệu của số bi đỏ và số bi trắng theo thứ tự là ba số hạng liên tiếp của một cấp số cộng .

Gọi x ;y ;z lần lượt là số bi đỏ, bi xanh và bi trắng được lấy. Suy ra

+ Hiệu của số bi xanh và bi đỏ là y-x.

+ Hiệu của số bi trắng và bi xanh là z-y.

+ Hiệu của số bi đỏ và bi trắng là x-z.

Theo giả thiết, ta có (y-x) – (x-z)=2(z-y)

Hay y=z.

Do đó biến cố A được phát biểu lại như sau 6 viên bi được chọn có cả ba màu đồng thời số bi xanh bằng số bi trắng . Ta có các trường hợp thuận lợi cho biến cố A như sau:

Trường hợp 1. Chọn 2 viên bi đỏ, 2 viên bi xanh và 2 viên bi trắng.

Do đó trường hợp này có

Trường hợp 2. Chọn 4 viên bi đỏ, 1 viên bi xanh và 1 viên bi trắng.

Do đó trường hợp này có

Suy ra số phần tử của biến cố A là

Vậy xác suất cần tính :

Ví dụ 4: Một hộp chứa 12 viên bi kích thước như nhau, trong đó có 5 viên bi màu xanh được đánh số từ 1 đến 5; có 4 viên bi màu đỏ được đánh số từ 1 đến 4 và 3 viên bi màu vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên 2 viên bi từ hộp, tính xác suất để 2 viên bi được lấy vừa khác màu vừa khác số.

A.8/33 B.14/33 C.29/66 D.37/66

Hướng dẫn giải :

Đáp án : D

Không gian mẫu là số sách lấy tùy ý 2 viên từ hộp chứa 12 viên bi.

Suy ra số phần tử của không gian mẫu là

Gọi A là biến cố 2 viên bi được lấy vừa khác màu vừa khác số .

+ Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi đỏ là 4.4= 16 cách (do số bi đỏ ít hơn nên ta lấy trước, có 4 cách lấy bi đỏ. Tiếp tục lấy bi xanh nhưng không lấy viên trùng với số của bi đỏ nên có 4 cách lấy bi xanh).

+ Số cách lấy 2 viên bi gồm: 1 bi xanh và 1 bi vàng là 3.4= 12 cách.

+ Số cách lấy 2 viên bi gồm: 1 bi đỏ và 1 bi vàng là 3.3= 9 cách.

Vậy xác suất cần tính P(A)= 37/66

Ví dụ 5: Cho tập hợp A= { 0,1,2,3,4,5}. Gọi S là tập hợp các số có 3 chữ số khác nhau được lập thành từ các chữ số của tập A. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn có chữ số cuối gấp đôi chữ số đầu.

A.1/5 B.23/25 C.2/25 D.4/5

Hướng dẫn giải :

Đáp án : C

+ Gọi số cần tìm của tập S có dạng abc

Trong đó:

Khi đó

+ Số cách chọn chữ số a có 5 cách chọn vì a≠0 .

+ Số cách chọn chữ số b có 5 cách chọn vì b≠a.

+ Số cách chọn chữ số c có 4 cách chọn vì c≠a;c≠b.

Do đó tập S có 5.5.4= 100 phần tử.

Không gian mẫu là chọn ngẫu nhiên 1 số từ tập S.

Suy ra số phần tử của không gian mẫu là

+ Gọi X là biến cố “Số được chọn có chữ số cuối gấp đôi chữ số đầu”.

Khi đó ta có các bộ số là 1b2 hoặc 2b4 thỏa mãn biến cố X và cứ mỗi bộ thì b có 4 cách chọn nên có tất cả 4+ 4= 8 số thỏa yêu cầu.

Suy ra số phần tử của biến cố X là n(X)= 8.

Vậy xác suất cần tính:P(X)= 8/100=2/25

Ví dụ 6: Cho tập hợp A={2,3,4,5,6,7,8}. Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập thành từ các chữ số của tập A. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ.

A.1/5 B.3/35 C.17/35 D.18/35

Hướng dẫn giải :

Đáp án : D

Số phần tử của tập S là

Không gian mẫu là chọn ngẫu nhiên 1 số từ tập S.

Suy ra số phần tử của không gian mẫu là

Gọi X là biến cố ” Số được chọn luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ “.

Số cách chọn hai chữ số chẵn từ bốn chữ số 2,4,6,8 là

Số cách chọn hai chữ số lẻ từ ba chữ số 3,5,7 là

Từ bốn chữ số được chọn ta lập số có bốn chữ số khác nhau, số cách lập tương ứng với một hoán vị của 4 phần tử nên có 4! cách.

Suy ra số phần tử của biến cố X là n(X)= 6.3. 4!= 432 .

Vậy xác suất cần tính P(X)= 432/840= 18/35.

Ví dụ 7: Gọi S là tập hợp các số tự nhiên có 3 chữ số đôi một khác nhau được lập thành từ các chữ số 1,2,3,4,6. Chọn ngẫu nhiên một số từ S, tính xác xuất để số được chọn chia hết cho 3

A.1/10 B.3/5 C.2/5 D.1/15

Hướng dẫn giải :

Đáp án : C

– Số phần tử của S là

Không gian mẫu là chọn ngẫu nhiên 1 số từ tập S.

Suy ra số phần tử của không gian mẫu là

– Gọi A là biến cố ” Số được chọn chia hết cho 3″.

Từ 5 chữ số đã cho ta có bộ gồm ba chữ số có tổng chia hết cho 3 là(1,2,3); (1,2,6); ( 2,3,4) và (2,4,6). Mỗi bộ ba chữ số này ta lập được 3!= 6 số thuộc tập hợp S.

Suy ra số phần tử của biến cố A là n(A)= 6.4= 24 .

Vậy xác suất cần tính P(A)= 24/60= 2/5

Ví dụ 8: Đội tuyển học sinh giỏi của một trường THPT có 8 học sinh nam và 4 học sinh nữ. Trong buổi lễ trao phần thưởng, các học sinh trên được xếp thành một hàng ngang. Tính xác suất để khi xếp sao cho 2 học sinh nữ không đứng cạnh nhau.

A.14/55 B.25/660 C.23/55 D.19/660

Hướng dẫn giải :

Đáp án : A

– Không gian mẫu là số cách sắp xếp tất cả 12 học sinh thành một hàng ngang.

Suy ra số phần tử của không gian mẫu là n(Ω)= 12! .

– Gọi A là biến cố ” Xếp các học sinh trên thành một hàng ngang mà 2 học sinh nữ không đứng cạnh nhau”. Ta mô tả khả năng thuận lợi của biến cố A như sau:

Đầu tiên xếp 8 học sinh nam thành một hàng ngang, có 8! cách.

Sau đó xem 8 học sinh này như 8 vách ngăn nên có 9 vị trí để xếp 4 học sinh nữ thỏa yêu cầu bài toán (gồm 7 vị trí giữa 8 học sinh và 2 vị trí hai đầu). Do đó có cách xếp 4 học sinh nữ.

Suy ra số phần tử của biến cố A là

Vậy xác suất cần tính :

Ví dụ 9: Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó.

A.5/6 B.1/6 C.2/3 D.1/2

Hướng dẫn giải :

Đáp án : B

– Không gian mẫu là số cách dán 3 con tem trên 3 bì thư, tức là hoán vị của 3 con tem trên 3 bì thư. Suy ra số phần tử của không gian mẫu là n(Ω)= 3!= 6

– Gọi A là biến cố ” 2 bì thư lấy ra có số thứ tự giống với số thứ tự con tem đã dán vào nó”

Thế thì bì thư còn lại cũng có số thứ tự giống với số thứ tự con tem đã dán vào nó. Trường hợp này có 1 cách duy nhất

Suy ra số phần tử của biến cố A là n(A)= 1

Vậy xác suất cần tính là P(A)= 1/6

Ví dụ 10: Trong thư viện có 12 quyển sách gồm 3 quyển Toán giống nhau, 3 quyển Lý giống nhau, 3 quyển Hóa giống nhau và 3 quyển Sinh giống nhau. Tính xác suất để xếp thành một dãy sao cho 3 quyển sách thuộc cùng 1 môn không được xếp liền nhau?

A.1/28512 B.1/299376 C.1/14256 D.1/7128

Hướng dẫn giải :

Đáp án : A

– Không gian mẫu là xếp 12 quyển sách thành một dãy nên số phần tử của không gian mẫu là: n(Ω)= 12!

– Gọi A là biến cố xếp 12 quyển thành dãy sao cho 3 quyển sách thuộc cùng một môn không được xếp cạnh nhau. Ta tính số các kết quả thuận lợi cho biến cố A:

Xếp 3 cuốn sách Toán kề nhau. Xem 3 cuốn sách Toán là 3 vách ngăn, giữa 3 cuốn sách Toán có 2 vị trí trống và thêm hai vị trí hai đầu, tổng cộng có 4 vị trí trống.

+ Bước 1. Chọn 3 vị trí trống trong 4 vị trí để xếp 3 cuốn Lý, có

+ Bước 2. Giữa 6 cuốn Lý và Toán có 5 vị trí trống và thêm 2 vị trí hai đầu, tổng cộng có 7 vị trí trống. Chọn 3 vị trí trong 7 vị trí trống để xếp 3 cuốn Hóa, có

+ Bước 3. Giữa 9 cuốn sách Toán, Lý và Hóa đã xếp có 8 vị trí trống và thêm 2 vị trí hai đầu, tổng cộng có 10 vị trí trống. Chọn 3 vị trí trong 10 vị trí trống để xếp 3 cuốn Sinh, có

Vậy theo quy tắc nhân số khả năng thuận lợi cho A là:

4. 35. 120= 16800 cách

⇒ Xác suất biến cố A là: P(A)= 16800/12!= 1/28512

Ví dụ 11: Một lớp học có 30 học sinh gồm có cả nam và nữ. Chọn ngẫu nhiên 3 học sinh để tham gia hoạt động của Đoàn trường. Xác suất chọn được 2 nam và 1 nữ là 12/29. Tính số học sinh nữ của lớp.

A.16 B.14 C.13 D.17

Hướng dẫn giải :

Đáp án : B

– Gọi số học sinh nữ của lớp là n( n∈N*;n≤28).

Suy ra số học sinh nam là 30- n.

– Không gian mẫu là chọn bất kì 3 học sinh từ 30 học sinh.

Vậy số học sinh nữ của lớp là 14 học sinh.

Ví dụ 12 : Một chi đoàn có 3 đoàn viên nữ và một số đoàn viên nam. Cần lập một đội thanh niên tình nguyện (TNTN) gồm 4 người. Biết xác suất để trong 4 người được chọn có 3 nữ bằng 2/5 lần xác suất 4 người được chọn toàn nam. Hỏi chi đoàn đó có bao nhiêu đoàn viên.

A.9 B.10 C.11 D.12

Hướng dẫn giải :

Đáp án : A

+ Gọi số đoàn viên trong chi đoàn đó là n(n≥7;n∈N*)

Suy ra số đoàn viên nam trong chi đoàn là n- 3

Vậy đoàn có 9 đoàn viên.

Ví dụ 13: Một hộp có 10 phiếu, trong đó có 2 phiếu trúng thưởng. Có 10 người lần lượt lấy ngẫu nhiên mỗi người 1 phiếu. Tính xác suất người thứ ba lấy được phiếu trúng thưởng.

A.4/5 B.3/5 C.1/5 D.2/5

Hướng dẫn giải :

Đáp án : C

Không gian mẫu là mỗi người lấy ngẫu nhiên 1 phiếu.

Suy ra số phần tử của không gian mẫu là n(Ω)= 10! .

Gọi A là biến cố ” Người thứ ba lấy được phiếu trúng thưởng”.

Ta mô tả khả năng thuận lợi của biến cố A như sau:

+ Người thứ ba có khả năng lấy được phiếu trúng thưởng.

+ 9 người còn lại có số cách lấy phiếu là 9!.

Suy ra số phần tử của biến cố A là n(A)= 2.9!.

Vậy xác suất cần tính P(A)= 2.9!/10!= 1/5

Ví dụ 14: Trong kỳ thi THPT Quốc Gia, mỗi lớp thi gồm 24 thí sinh được sắp xếp vào 24 bàn khác nhau. Bạn Nam là một thí sinh dự thi, bạn đăng ký 4 môn thi và cả 4 lần thi đều thi tại một phòng duy nhất. Giả sử giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên, tính xác xuất để trong 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí.

A.253/1152 B.899/1152 C.17/288 D.21/576

Hướng dẫn giải :

Đáp án : A

– Không gian mẫu là số cách ngẫu nhiên chỗ ngồi trong 4 lần thi của Nam.

Suy ra số phần tử của không gian mẫu là n(Ω)= 24 4 .

– Gọi A là biến cố ” 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí”.

Ta mô tả không gian của biến cố A như sau:

+ Trong 4 lần có 2 lần trùng vị trí, có cách.

+ Giả sử lần thứ nhất có 24 cách chọn chỗ ngồi, lần thứ hai trùng với lần thứ nhất có 1 cách chọn chỗ ngồi. Hai lần còn lại thứ ba và thứ tư không trùng với các lần trước và cũng không trùng nhau nên có 23.22 cách.

Suy ra số phần tử của biến cố A là n(A)= .24.23.22.

Vậy xác suất cần tính :

B. Bài tập trắc nghiệm

Câu 1: Cho tập hợp A= {1,2,3,4,5}. Gọi S là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập A. Chọn ngẫu nhiên một số từ S, tính xác xuất để số được chọn có tổng các chữ số bằng 10.

A.1/30 B.3/25 C.7/25 D.7/30

Hiển thị đáp án

Đáp án : B

Câu 2: Có 20 tấm thẻ được đánh số từ 1 đến 20. Chọn ngẫu nhiên ra 8 tấm thẻ, tính xác suất để có 3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10.

A.560/4199 B.4/15 C.11/15 D.3639/4199

Hiển thị đáp án

Đáp án : A

Suy ra số phần tử của không mẫu là .

+ Đầu tiên chọn 3 tấm thẻ trong 10 tấm thẻ mang số lẻ, có

+ Tiếp theo chọn 4 tấm thẻ trong 8 tấm thẻ mang số chẵn (không chia hết cho 10 ), có

+ Sau cùng ta chọn 1 trong 2 tấm thẻ mang số chia hết cho 10, có

Suy ra số phần tử của biến cố A là

Vậy xác suất cần tính :

Câu 3: Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. Tính xác suất để hai số được chọn có chữ số hàng đơn vị giống nhau.

A.8/89 B.17/89 C.17/178 D.31/178

Hiển thị đáp án

Đáp án : A

Suy ra số phần tử của không gian mẫu là n(Ω)= =4005.

+ Chọn chữ số hàng chục của hai số: có cách chọn hai chữ số hàng chục (chọn từ các chữ số {1,2,3..,9}).

Suy ra số phần tử của biến cố X là n(X)= 10.=360 .

Câu 4: Gọi S là tập hợp các số tự nhiên gồm 9 chữ số khác nhau. Chọn ngẫu nhiên một số từ S, tính xác suất để chọn được một số gồm 4 chữ số lẻ và chữ số 0 luôn đứng giữa hai chữ số lẻ (hai số hai bên chữ số 0 là số lẻ).

A.49/54 B.5/54 C.17/54 D.11/54

Hiển thị đáp án

Đáp án : B

– Số phần tử của tập S là

Suy ra số phần tử của không gian mẫu là n(Ω)=

+ Chọn 1 trong 7 vị trí để xếp số 0, có

+ Chọn 2 trong 5 số lẻ và xếp vào 2 vị trí cạnh số 0 vừa xếp, có

+ Chọn 2 số lẻ trong 3 số lẻ còn lại và chọn 4 số chẵn từ { 2,4,6,8} sau đó xếp 6 số này vào 6 vị trí trống còn lại có

Vậy xác suất cần tính :

Câu 5: Một người bỏ ngẫu nhiên 4 lá thư và 4 chiếc phong bì thư đã để sẵn địa chỉ. Xác suất để có ít nhất một lá thư bỏ đúng địa chỉ là.

A.5/8 B.2/3 C.3/8 D.1/3

Câu 6: Giải bóng chuyền VTV Cup gồm 9 đội bóng tham dự, trong đó có 6 đội nước ngoài và 3 đội của Việt Nam. Ban tổ chức cho bốc thăm ngẫu nhiên để chia thành 3 bảng A; B; C và mỗi bảng có 3 đội. Tính xác suất để 3 đội bóng của Việt Nam ở 3 bảng khác nhau.

A.3/56 B.19/28 C.9/28 D.53/56

Hiển thị đáp án

Đáp án : C

Câu 7: Trong giải cầu lông kỷ niệm ngày truyền thống học sinh sinh viên có 8 người tham gia trong đó có hai bạn Việt và Hoàng. Các vận động viên được chia làm hai bảng A và B, mỗi bảng gồm 4 người. Giả sử việc chia bảng thực hiện bằng cách bốc thăm ngẫu nhiên, tính xác suất để cả 2 bạn Việt và Hoàng nằm chung 1 bảng đấu.

A.6/7 B.3/7 C.3/4 D.2/5

Hiển thị đáp án

Đáp án : B

Câu 8: Một bộ đề thi toán học sinh giỏi lớp 12 mà mỗi đề gồm 5 câu được chọn từ 15 câu dễ, 10 câu trung bình và 5 câu khó. Một đề thi được gọi là “Tốt” nếu trong đề thi có cả ba câu dễ, trung bình và khó, đồng thời số câu dễ không ít hơn 2. Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tìm xác suất để đề thi lấy ra là một đề thi ” Tốt”.

A.985/1566 B.235/783 C.3/7 D.625/1566

Hiển thị đáp án

Đáp án : D

Vậy xác suất cần tính :

Câu 9: Xếp 6 học sinh nam và 4 học sinh nữ vào một bàn tròn 10 ghế. Tính xác suất để không có hai học sinh nữ ngồi cạnh nhau.

A.37/42 B.5/42 C.7/504 D.1/6

Hiển thị đáp án

Đáp án : B

+ Ta xem 6 học sinh nam như 6 vách ngăn trên vòng tròn, thế thì sẽ tạo ra 6 ô trống để ta xếp 4 học sinh nữ vào (mỗi ô trống chỉ được xếp 1 học sinh nữ). Do đó có cách xếp.

Vậy xác suất cần tính: P(A)= (5!.)/9! = 5/42

Câu 10: Có 4 hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Tính xác suất để 1 toa có 3 người, 1 toa có 1 người, 2 toa còn lại không có ai.

A.3/4 B.3/16 C.13/16 D.1/4

Hiển thị đáp án

Đáp án : B

+ Giai đoạn thứ nhất. Chọn 3 hành khách trong 4 hành khách, chọn 1 toa trong 4 toa và xếp lên toa đó 3 hành khách vừa chọn. Suy ra có

+ Giai đoạn thứ hai. Chọn 1 toa trong 3 toa còn lại và xếp lên toa đó 1 một hành khách còn lại. Suy ra có

Câu 11: Có 8 người khách bước ngẫu nhiên vào một cửa hàng có 3 quầy.Tính xác suất để có 3 người cùng đến quầy thứ nhất?

A.106/729 B.203/2187 C.2375/6561 D.1792/6561

Hiển thị đáp án

Đáp án : D

Giai đoạn thứ nhất. Chọn 3 người khách trong 8 người khách và cho đến quầy thứ nhất, có

Vậy xác suất cần tính :

Câu 12: Một lớp học có 40 học sinh trong đó có 4 cặp anh em sinh đôi. Trong buổi họp đầu năm thầy giáo chủ nhiệm lớp muốn chọn ra 3 học sinh để làm cán sự lớp. Tính xác suất để chọn ra 3 học sinh làm cán sự lớp mà không có cặp anh em sinh đôi nào.

A.64/65 B.12/65 C.98/130 D.Đáp án khác

Hiển thị đáp án

Đáp án : A

Câu 13: Một người có 10 đôi giày khác nhau và trong lúc đi du lịch vội vã lấy ngẫu nhiên 4 chiếc. Tính xác suất để trong 4 chiếc giày lấy ra có ít nhất một đôi.

A.3/7 B.13/64 C.99/323 D.224/323

Hiển thị đáp án

Đáp án : C

+ Số cách chọn 4 đôi giày từ 10 đôi giày là

+ Mỗi đôi chọn ra 1 chiếc, thế thì mỗi chiếc có cách chọn. Suy ra 4 chiếc có

Suy ra số phần tử của biến cố Alà

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k4: chúng tôi

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Cập nhật thông tin chi tiết về Bài Toán Thực Tế Về Cấp Số Nhân Cực Hay Có Lời Giải trên website Englishhouse.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!